

chartered consulting engineers

Our ref: 8352_FCA

Flood Consequences Assessment

for

Land off Holywell Road,

Ewloe Green, Ewloe,

Flintshire

For : Castle Green Homes Ltd Unit 20, St Asaph Business Park St Asaph Denbighshire LL17 0LJ

Park House, Sandpiper Court, Chester Business Park, Chester, CH4 9QU COOPERS is the trading name of Coopers (Chester) Limited. Company registered in England & Wales. Company number 09730429. **tel:** 01244 684 910

08th March 2024

web: www.coopers.co.uk email: admin@coopers.co.uk

Flood Consequences Assessment Land off Holywell Road, Ewloe Green, Ewloe, Flintshire

Document Verification

Project Title	Land off Holywell Road, Ewloe Green, Ewloe, Flintshire
Project Number	8352
Document Title	Flood Consequences Assessment
Document Number	8352_FCA_Issue 1

This document is not to be used for contractual or engineering purposes unless the document verification sheet is signed where indicated by the approver of the document.

Prepared by

XAme

A Jones

Senior Infrastructure Engineer

Checked and Approved

Peter L Syles

P R Sykes

BSc (Hons), MSc (Eng), CGeol, FGS

Document Revision

Report Reference	Date	Description	Prepared	Checked and Approved
8352_FCA	08/03/2024	Flood Consequences Assessment	A Jones	P R Sykes

This report has been prepared for and on behalf of our client, in accordance with the terms and conditions of the appointment agreement with Coopers. Other than where specifically allowed for in the said appointment agreement, any other party using this report for any purpose whatsoever does so at their own risk and any duty of care to that party is specifically excluded.

Flood Consequences Assessment Land off Holywell Road, Ewloe Green, Ewloe, Flintshire

Contents

Section	<u>Page No.</u>
1.0	Introduction
2.0	Site Characteristics
3.0	Sources of Flood Risk Information
4.0	Sources of Flood Risk
5.0	Surface Water Drainage
6.0	Conclusions and Recommendations

Figures

Figure 1 -	Site Location	4
Figure 2 -	Aerial View	5
Figure 3 -	Site Topography	6
Figure 4 -	Natural Resources Wales Flood Map for Planning (Sea and Rivers)	7
Figure 5 -	Natural Resources Wales Surface Water Flooding Map	8
Figure 6	Natural Resources Wales Development Advice Flooding (DAM) Map	9
Figure 7	Natural Resources Wales Reservoir Flooding Map	11

List of Appendices

Appendix 1	- Reference Drawings	
Appendix 2	- EnviroCheck Flood Screening Report	
Appendix 3	- Infiltration Consideration	
Appendix 4	- Correspondence	
Appendix 5	- Calculations	
Ref: 8352FCA	Page 2 of 17	08 March 2024

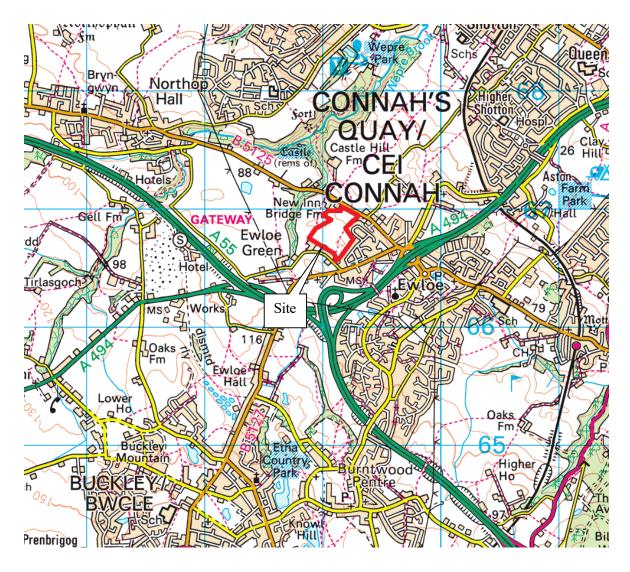
1.0 Introduction

Coopers (Chester) Ltd, (Coopers) have been appointed by Castle Green Homes Ltd to assess the risk of flooding for a parcel of land off Holywell Road, Ewloe, Flintshire. Castle Green Homes Ltd are proposing a new housing development, comprising of approximately 315 No. dwellings.

Castle Green Homes Ltd are planning the construction of a mixture of semi-detached and detached residential properties with associated access road, parking, vehicular access and landscaping subject to conditions. It is understood the site does not currently benefit from any planning decision.

This flood consequences assessment (FCA) evaluates the proposals regarding to flood risk, identifying and appraising potential flood risk both to and from the whole site. Coopers have carried out the following:

- i. Assessment of the development potential of the site in line with the Welsh
- Government's Technical Advice Note 15: Development and Flood Risk (TAN15) and;
- ii. An assessment of surface water runoff and drainage strategy


Since January 7th, 2019, all new developments will require sustainable drainage for surface water if there are at least 2 No. properties or the construction area is more than 100m². The surface water drainage systems must be designed and built to meet Welsh Government standards for sustainable drainage.

These systems must be approved by the local authority acting in its SuDS Approving Body (SAB) role before construction work begins. The SAB will have a duty to adopt compliant systems.

2.0 Site Characteristics

2.1 <u>Site Location</u>

The site is a parcel of agricultural land in Ewloe Green to the northwest of Ewloe. The site is situated to the south of Holywell Road (B5125) and to the north of Green Lane, at approximate grid reference SJ291667.

Figure 1 – Site Location

2.2 <u>Site Description</u>

The site covers an area of approximately 10.0 Hectares of land located approximately 1.0km northwest of Ewloe Town Centre. The site is presently pasture ground, with hedgerows and trees located along the field boundaries.

The surrounding area is primarily a mixture of residential, and agricultural land with existing properties to the east, open fields to the west, Holywell Road to the north and Green Lane to the south.

There are two existing ordinary watercourses within the site. The watercourse in the southern portion of the site drains in a south easterly direction and the watercourse in the northern portion of the site has been confirmed to drain north under Holywell Road and into open watercourses in the field to the north. This is a tributary of New Inn brook located 200m west of the site. Both watercourses currently take flows from surface runoff within the site.

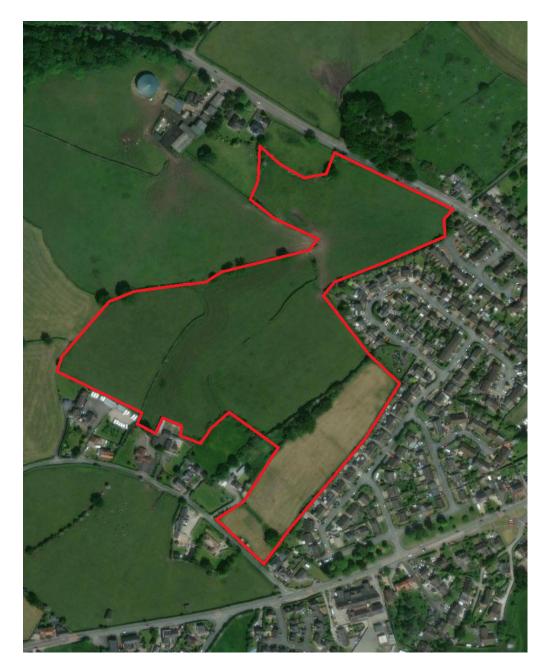


Figure 2 – Aerial View

The topography of the site has a highpoint at the centre of the site at an elevation of 90.00m AOD with falls towards the southern (86.7m AOD), western (88.1m AOD) and northern (77.50m AOD) boundaries.

Refer to Appendix 1 for the Topographical Survey.

Figure 3 – Site Topography

3.0 Sources of Flood Risk Information

3.1 <u>The Welsh Government Development Advice Map</u>

The Welsh Government Development Advice Map shows the site is located within Flood Zone A – an area considered to be at little or no risk of fluvial or tidal flooding, with a less than 1 in 1000 (0.1%) annual probability of flooding in any given year.

The proposed residential development is considered to be a 'highly vulnerable' development in accordance with Figure 2 of the Welsh Governments Technical Advice Note 15. Highly vulnerable development is considered to be appropriate within Flood Zone A.

3.2 <u>Natural Resources Wales</u>

The NRW Flood Map shows the site is located within Flood Zone 1 – an area considered to have the lowest probability of fluvial flooding. It is assessed as having a less than 0.1% annual probability of flooding in any given year.

Figure 4 - Natural Resources Wales Flood Map for Planning (Sea and Rivers)

The Natural Resources Wales long term flood risk maps indicates that the majority of the site is at a very low risk of flooding from surface water, with areas towards the north-east and south-west at low to high risk.

Figure 5 – Natural Resources Wales Surface Water Flooding Map

These areas are associated with the watercourses and low-lying areas of the site. The introduction of a new drainage network post development will ensure that the drainage has capacity to cater for a 100-year storm event including allowance for urban creep and climate change. Finished slab levels will also be kept a minimum 150mm above existing levels to negate any flood risk and ground levels will be designed to fall away from dwellings to enable any potential overland flows to be conveyed through the site without any increased flood risk to properties.

The current masterplan indicates development including a proposed foul pumping station within the northern area currently identified as within the surface water flood risk area. Mitigation will be required to ensure there is no loss of flood storage within the site so providing areas of compensatory flood storage will be required. There appears to be sufficient space to the west of this flood area to reprofile the ground to provide a like for like compensatory flood storage volume to ensure there is no increased risk on or off site as a consequence of development.

The overall risk from surface water flooding is considered as low.

The Natural Resources Wales long term flood risk maps do not indicate any flood risk from Development Advice Maps

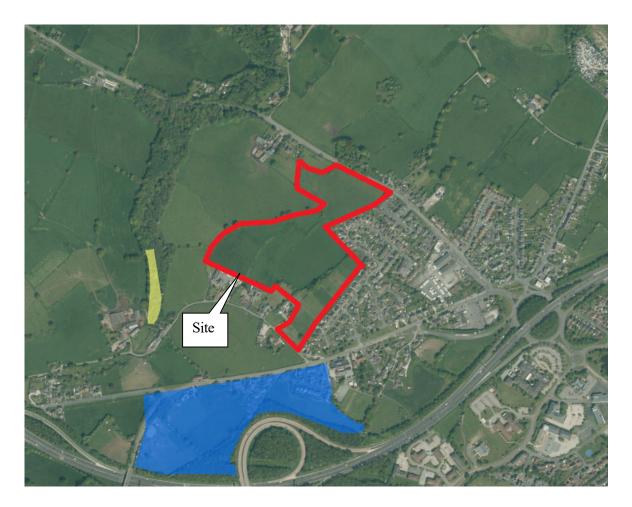


Figure 6 – Natural Resources Wales Development Advice Flooding (DAM) Map

It should be noted that flooding can occur at any time and in any place from sources such as rising groundwater levels, burst water mains, blocked road drains, run-off from hillsides, sewer overflows, etc.

3.3 Flintshire County Council LLFA

We have contacted Flintshire County Council for confirmation of any known historical flooding within the vicinity of the site. They have no records of flooding within the site but have noted potential hotspots which correlate to the NRW surface water flood maps.

Refer to Appendix 4 for all correspondence.

4.0 Sources of Flood Risk

4.1 <u>Fluvial</u>

Extreme fluvial flood events have the potential to cause rapid inundation of the site whilst posing a threat to welfare and users. As outlined in Section 3.2; the site is within Flood Zone 1 and is, therefore not at risk from extreme fluvial or tidal flooding. Therefore, the risk from extreme fluvial flooding to the site is considered to be low.

4.2 Infrastructure Failure (Existing and Proposed)

The failure of infrastructure such as culverts or bridges could increase the risk of flooding at the site. There are a number of culverts along the existing watercourse within the site boundary. The client should consider construction of headwalls with safety grilles and ensuring a maintenance plan is in place to reduce the risk of blockages.

The risk of flooding is considered as low.

4.3 Overland Flow

Overland flow occurs when the infiltration capacity of the ground is exceeded in a storm event. This can result in water travelling as a sheet flow overland or excess water being conveyed from one location to another via local road networks. The site currently drains naturally from a high point within the centre of the site towards the south, west and north boundaries. Overland flow is not considered a significant risk as flows from the site will be significantly reduced post development with the incorporation of positive drainage and an internal road network.

4.4 <u>Sewer Flooding</u>

If the capacity of the sewers is exceeded in an extreme event, or a blockage occurs, surcharging of the network can result in surface flooding. Welsh Water sewer plans which are included in Appendix 1, indicate the presence of a 300mm diameter surface water sewer in the northern end of the site flowing northwest and discharging to the watercourse. This sewer will need to be diverted to suit the masterplan and will be subject to a \$185 sewer diversion application with Welsh Water.

We are proposing to discharge all foul flows into the 150mm Diameter foul sewer to the northeast of the site located in Holywell Road / Hilltop Close subject to Welsh Water approval. A foul pumping station will be required as site levels do not allow for a gravity connection from the site. Welsh Water are currently undertaking a Hydraulic Modelling Assessment (HMA) to determine capacity of the receiving sewer network and suitable points of connection for foul flows from the development.

At the time of writing this report Welsh Water have not confirmed if they have any records or any known flooding within the vicinity of the site. Refer to Appendix 4 for correspondence.

The overall risk from sewer flooding is considered as low.

4.5 <u>Groundwater Flooding</u>

Groundwater flooding occurs as a result of water rising up from the underlying superficial deposits, bedrock or from springs.

Groundwater was encountered between depths of 2.1 - 3.2m within the window samples undertaken as part of the initial site investigation. Further information will be available following a full site investigation.

The Envirocheck Flood Report presented in Appendix 2 indicates there is negligible risk of ground water flooding within the site boundary.

The overall risk from groundwater flooding is considered as low.

4.6 <u>Coastal Flooding</u>

The development site is located approximately 3.0km south of the River Dee Estuary. No flooding is indicated on NRW flood mapping and is therefore not at risk from tidal inundation.

Refer to Figure 2 – NRW Flood Map for Planning (Sea and River).

4.7 <u>Reservoirs</u>

The site is not located in proximity of any reservoirs. Additionally, the NRW maps indicate the site is not at risk of flooding from reservoirs. Refer to Figure 7.

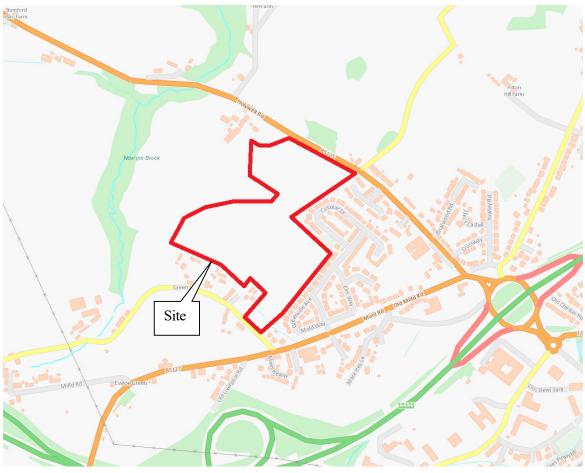


Figure 7 – Natural Resources Wales Reservoir Flooding Map

5.0 Surface Water Drainage

5.1 <u>General</u>

The design for a surface water drainage system for the proposed development will be guided by the principles set out in the Welsh Government's 'Recommended non-statutory standards for sustainable drainage (SuDS) in Wales – designing, constructing, operating and maintaining surface water drainage systems' (2017)

The SuDS Standards Wales sets out the following hierarchy for surface water runoff destination:

Priority Level 1: Surface water runoff is collected for use;Priority Level 2: Surface water runoff is infiltrated to ground;Priority Level 3: Surface water runoff is discharged to a surface water body;Priority Level 4: Surface water runoff is discharged to a surface water sewer, highway drain, or another drainage system;Priority Level 5: Surface water runoff is discharged to a combined sewer.

Note that Priority Level 1 is the preferred (highest priority) and that 4 and 5 should only be used in exceptional circumstances.

5.2 <u>Existing Surface Water Drainage</u>

The site does not benefit from any existing drainage and will rely on infiltration and surface water runoff to dispose of surface water flows. The flows will follow topography with the majority of the site draining to the two ordinary watercourses located to the northern and southern ends of the site. We are not aware of any existing land drainage within the site to assist with drainage.

5.3 Existing Site Runoff

The greenfield run-off rates for the site have been calculated using the HR Wallingford Greenfield runoff rate estimation tool. Calculations below are based on a 8.7ha developable site area and the default soil type 4 indicating cohesive materials exhibiting limited infiltration properties.

1-year	= 39.69 l/s
30-year	= 80.29 l/s
100-year	= 98.33 l/s
QBAR	= 40.11 l /s

Refer to Appendix 5 for surface water run-off calculations.

5.4 <u>Proposed Surface Water Drainage and Runoff Rates</u>

Priority Level 1

Whilst rainwater harvesting has been considered for the proposed development it should be noted that any device enabling water re-use cannot be taken into account when sizing attenuation as the storage facility may be full when a storm event occurs. Therefore, an overflow to an infiltration device (where ground conditions allow) or to a watercourse / sewer will be required.

Castle Green Homes Ltd are not proposing to incorporate rainwater harvesting within the development; however, they are proposing to install a water butt to each dwelling which will allow for water collection for garden re-use.

Priority Level 2

Preliminary site investigation has determined the site is generally not suitable for infiltration techniques to dispose of surface water flows from the site due to the slow infiltration rates determined within the falling head tests undertaken within the window samples. However, we are proposing to use some areas of the site for partial infiltration where feasible.

It should be noted the infiltration testing undertaken is not compliant with BRE 365 and full testing would be required for infiltration designs and assessments.

The investigation has identified areas of shallow perched groundwater and slower anticipated infiltration rates, reflective of the drift geology, where traditional soakaways would not typically be considered feasible. Parts of the site indicate the potential for higher drainage rates where infiltration testing may determine soakaways are viable.

Further infiltration testing in accordance with BRE365 is required and the results will need to be considered further to determine if any infiltration / partial infiltration components can be utilised for the disposal of surface water flows from the site.

Refer to Appendix 3 for trial pit information.

Priority Level 3

There are 2 existing watercourses within the site. The watercourse in the southern portion of the site drains in a south easterly direction and the watercourse in the northern portion of the site has been confirmed to drain north under Holywell Road. This is a tributary of New Inn brook located 200m west of the site. Both watercourses currently take flows from surface runoff within the site.

The site may have existing land drains discharging into this watercourse which would follow the topography, but this has not been proven at this time.

A review of levels has determined the entire site can drain to the two watercourses located within the site, using a number of outfalls to suit the proposed gravity sewer routes / networks.

The southern watercourse will require a culvert diversion within the site to suit the masterplan. This will be subject to Land Drainage Consent (LDC) from Flintshire LLFA.

Priority Level 4

A review of the Welsh Water sewer records indicates the presence of a 300mm Diameter surface water sewer flowing northwest through the northern portion of the site. This sewer takes flows from Circular Drive residential road (located to the east of the site), through the proposed development and discharges to the watercourse in the northern corner. Refer to Appendix 1 for the Welsh Water sewer map.

This sewer will require a diversion to suit the masterplan proposals and will be subject to a S185 Sewer diversion application to Welsh Water. The proposed sewer will be routed through adoptable roads, shared drives and areas of POS. This new route will allow for surface water connections from the northern portion of the site, and we are proposing to increase the pipe size from a 300mm to 375mm Dia to accommodate the additional flows. This will need to be discussed further with Welsh Water and agreed with Flintshire SABS.

Priority Level 5

The nearest combined sewer is located in Mold Road to the southeast of the site. Refer to Appendix 1 for Welsh Water sewer map. We are not proposing any surface water connections into this asset.

5.5 <u>SuDS Approval Bodies</u>

Since January 7th, 2019, all new developments will require sustainable drainage for surface water if there are at least 2 No. properties or the construction area is more than 100m². The surface water drainage systems must be designed and built to meet Welsh Government standards for sustainable drainage.

These systems must be approved by the local authority acting in its SuDS Approving Body (SAB) role before construction work begins. The SAB will have a duty to adopt compliant systems.

Every SuDS application should go to every attempt to satisfy the Principles and Standards of the legislation. When vetting an application, the SAB officer will look at the clear red line boundary area of the site when considering space for SuDS and water management features and not the space that's left on the proposed site layout.

The principles are as follows:

SuDS schemes should aim to:

- 1. manage water on or close to the surface and as close to the source of the runoff as possible;
- 2. treat rainfall as a valuable natural resource;
- *3. ensure pollution is prevented at source, rather than relying on the drainage system to treat or intercept it;*

- 4. manage rainfall to help protect people from increased flood risk, and the environment from morphological and associated ecological damage resulting from changes in flow rates, patterns and sediment movement caused by the development;
- 5. *take account of likely future pressures on flood risk, the environment and water resources such as climate change and urban creep;*
- 6. use the SuDS Management Train, using drainage components in series across a site to achieve a robust surface water management system (rather than using a single "end of pipe" feature, such as a pond, to serve the whole development);
- 7. maximise the delivery of benefits for amenity and biodiversity;
- 8. seek to make the best use of available land through multifunctional usage of public spaces and the public realm;
- 9. perform safely, reliably and effectively over the design life of the development taking into account the need for reasonable levels of maintenance;
- 10. avoid the need for pumping where possible; and
- 11. be affordable, taking into account both construction and long-term maintenance costs and the additional environmental and social benefits afforded by the system.

Applicants seeking SAB Approval must demonstrate how they have complied with these principles or provide justification for any departure.

An indicative drainage strategy is presented in Appendix 1. We are proposing to ultimately drain the entire site into the two watercourses within the site via new outfalls.

The proposed surface water networks will discharge restricted flows into the open / culverted watercourse at numerous locations. We are also proposing to culvert an 85m long section of open watercourse in the southern portion of the site to accommodate the proposed layout. The culvert will be aligned through the road network / shared drives. This will require consent via a formal Flood Defence Consent (FDC) Application with Flintshire Local Lead Flood Authority (LLFA). Flows will be restricted to greenfield QBAR rate and attenuation will be provided within a network of oversized on-line pipes, buried cellular tanks and SUDS basins. Any new surface water outfalls will also require FDC approval.

The proposal will mimic the existing situation as the existing topography of the site generally falls towards the watercourses. Flow controls will limit the flows to the greenfield QBAR run-off rate. This is the 2.3-year rainfall event, so any storm event greater than this will have a post development flow rate reduction in the receiving watercourse and therefore will provide a reduced post development flood risk.

Incorporation of additional source control SuDS components such as water butts, permeable paving, filter drains, and bioretention components (tree pits and rain gardens) will need to be considered further at detailed design stage to meet the 5mm interception design criteria.

Flood Defence Consent will be required from Flintshire LLFA for the surface water outfalls into the watercourse. Early discussions are advised to ensure that the proposed points of connection and flow rates are acceptable to the approving authority.

Flintshire LLFA will also advise on any requirements on the existing watercourse including minimum distances on buffer zones for future maintenance and wildlife corridors. This will generally be a minimum of 3m from top of bank.

5.6 Foul Drainage

We are proposing to discharge all foul flows into the 150mm Diameter foul sewer to the northeast of the site located in Holywell Road / Hilltop Close subject to Welsh Water approval. A foul pumping station will be required as site levels do not allow for a gravity connection from the site. Welsh Water are currently undertaking a Hydraulic Modelling Assessment (HMA) to determine capacity of the receiving sewer network and suitable points of connection for foul flows from the development.

6.0 Conclusions and Recommendations

The site is located in Flood Zone 1 and has been shown to be at low risk of flooding from sea, rivers, groundwater, sewers and climate change. Therefore, mitigation measures are not considered necessary for any future development at the site.

There is a risk of surface water flooding associated with the existing watercourses and the low-lying ground within the site. This will need to be considered further and a detailed scheme for flood compensation may be required.

All potential sources of flooding have been considered as part of this report. There are no known records of historical flooding at the site.

The infiltration tests undertaken have determined that the underlying soils have slow to poor infiltration characteristics. Therefore, surface water run-off from highways, roof and private drives will discharge into the existing ordinary watercourses within the site. Further infiltration testing in accordance with BRE365 is required and the results will need to be considered further to determine if any infiltration / partial infiltration components can be utilised for the disposal of surface water flows from the site.

The development will increase the impermeable area of the site. This results in an increase in surface water runoff rates and volumes. In order to ensure the increase in runoff will not have an impact elsewhere all flows will discharge via gravity to the watercourses and surface water sewer at greenfield QBAR flow rates.

The possible effects of climate change have been considered by acknowledging the requirements to make allowance for increased rainfall in the calculation of surface water discharge rates over the lifespan of the development in line with current guidance. An allowance for urban creep should also be incorporated in the design with a proportional increase to node catchments.

All surface water run-off from highways, roof and private drives will be collected into gravity piped networks and discharged into networks of oversized pipes and SuDS attenuation features and ultimately discharge to the ordinary watercourses located within the site.

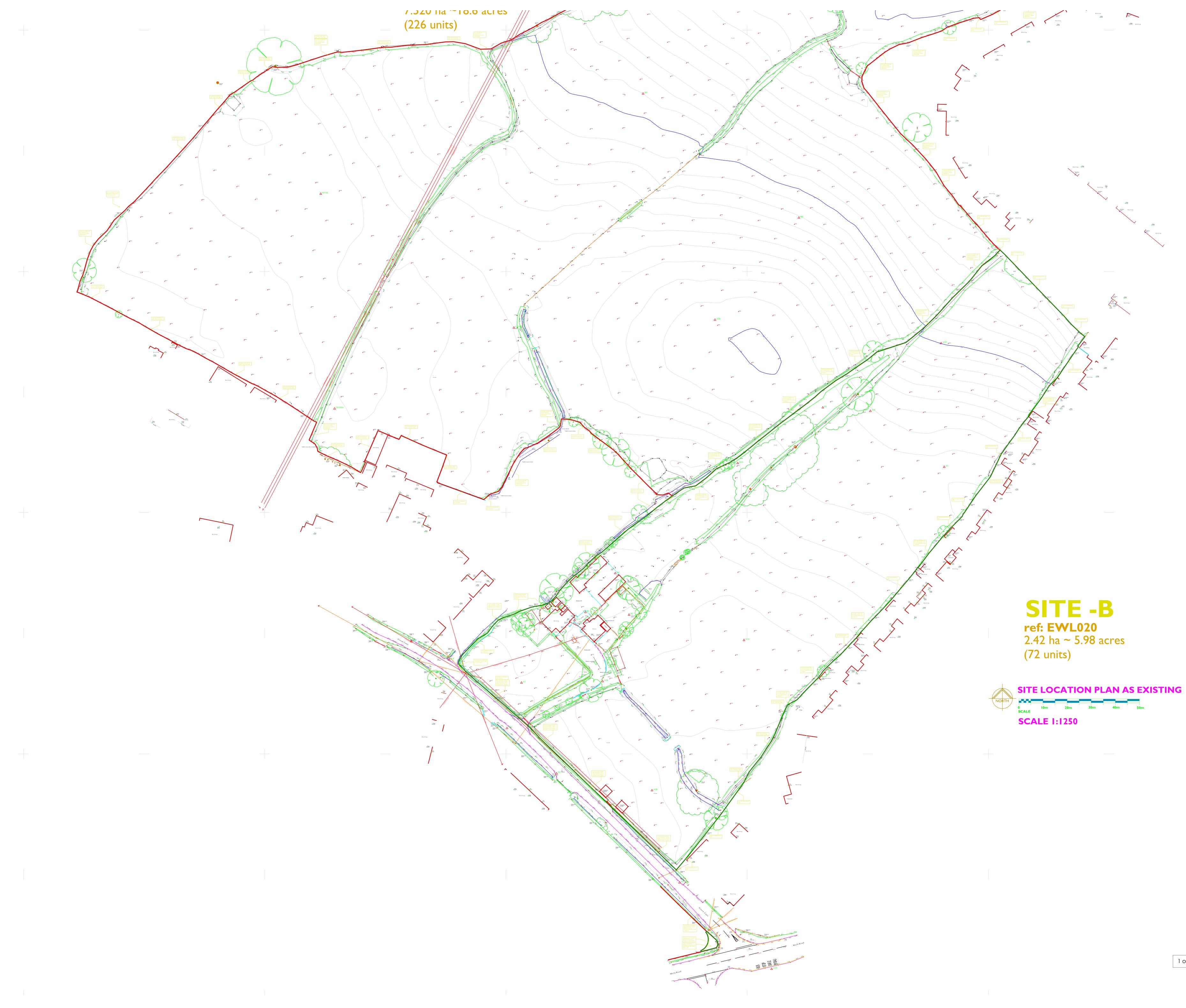
Additional on-site source control components such as permeable paving and bioretention components (tree pits and rain gardens) should be considered further at detailed design stage.

All foul sewers should be designed in accordance with Sewers for Adoption 7th Edition / Welsh Ministers Standards and will be subject to S104 Agreement.

A SuDS Maintenance and Management Plan should be produced to outline the activity and frequency of inspections and maintenance works required on any SuDS components subject to SAB Approval / Adoption.

This Flood Consequences Assessment should be submitted to the Local Planning Authority in support of the planning application.

Since January 7th, 2019, all new developments will require sustainable drainage for surface water if there are at least 2 properties or the construction area is more than 100m². The surface water drainage systems must be designed and built to meet Welsh Government standards for sustainable drainage.

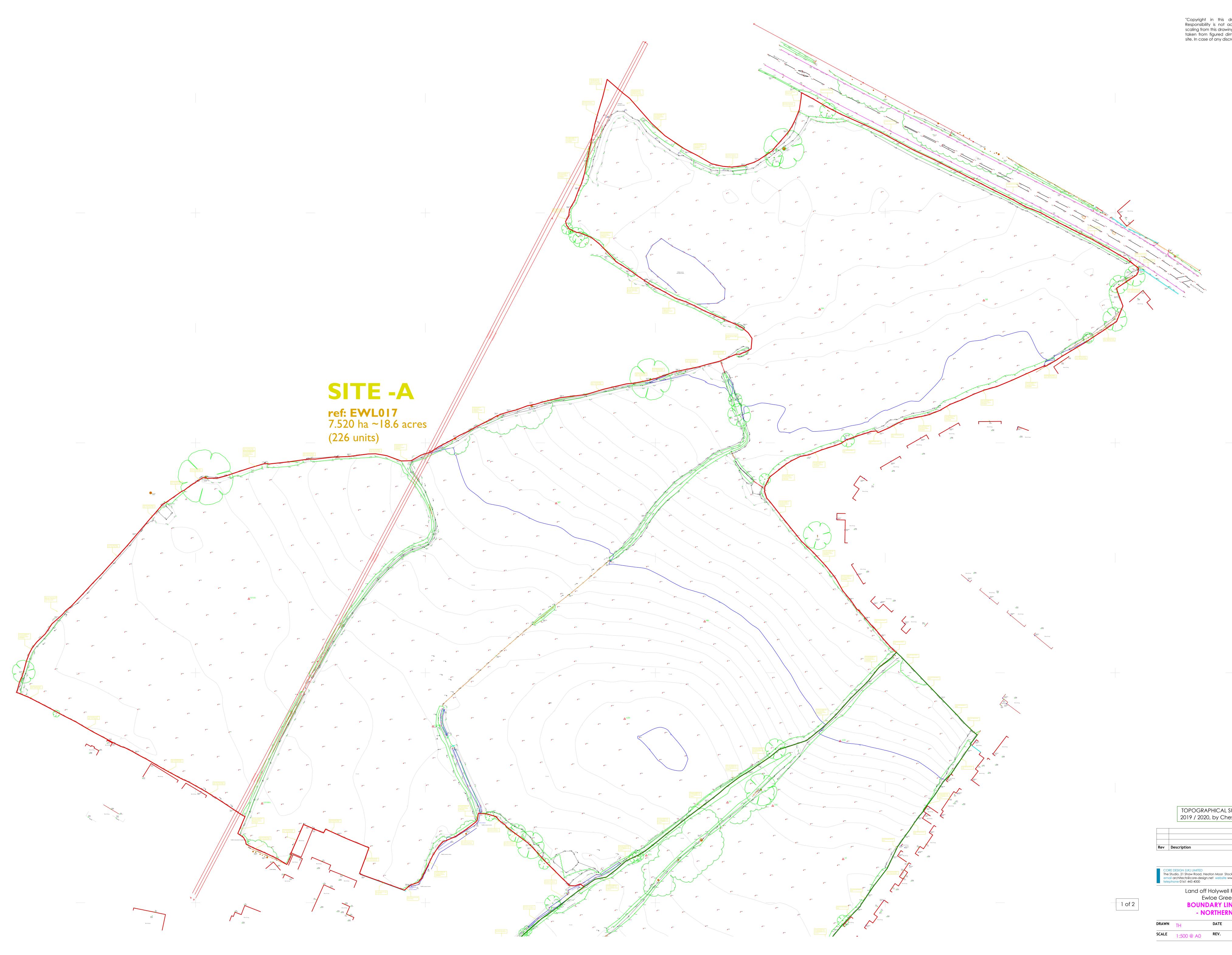

These systems must be approved by the local authority acting in its SuDS Approving Body (SAB) role before construction work begins. The SAB will have a duty to adopt compliant systems.

Flood Consequences Assessment for Land off Holywell Road, Ewloe, Flintshire

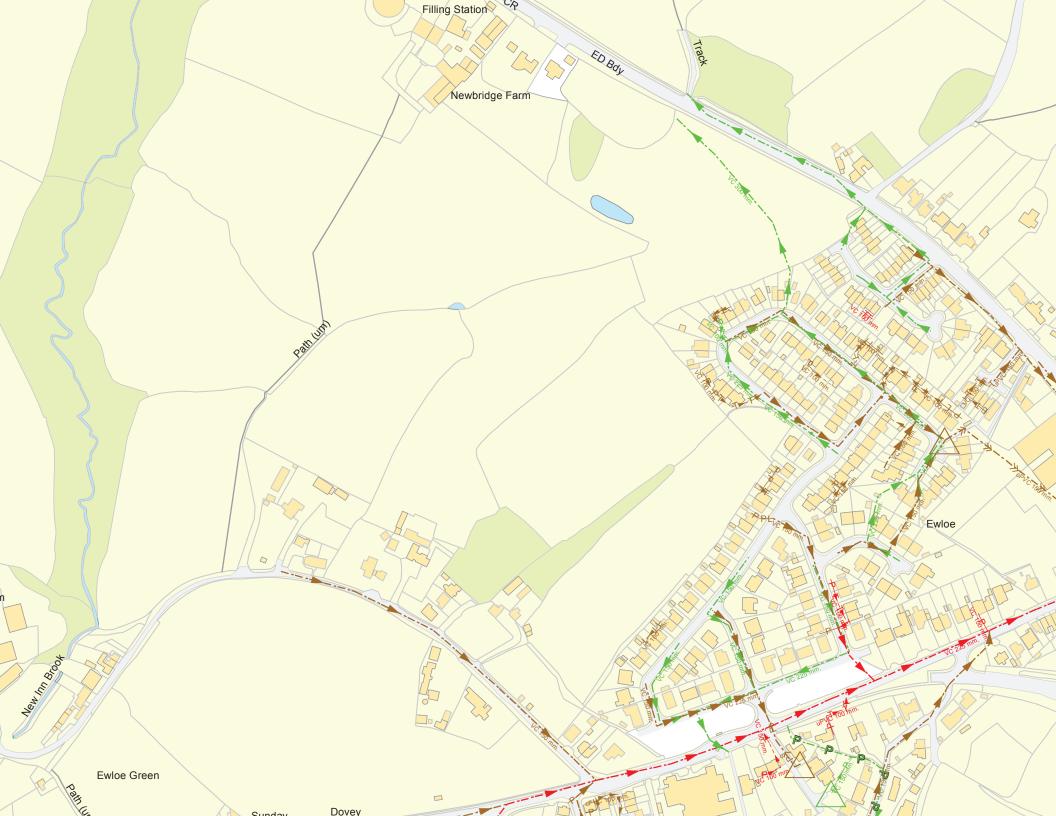
<u>Appendix 1</u>

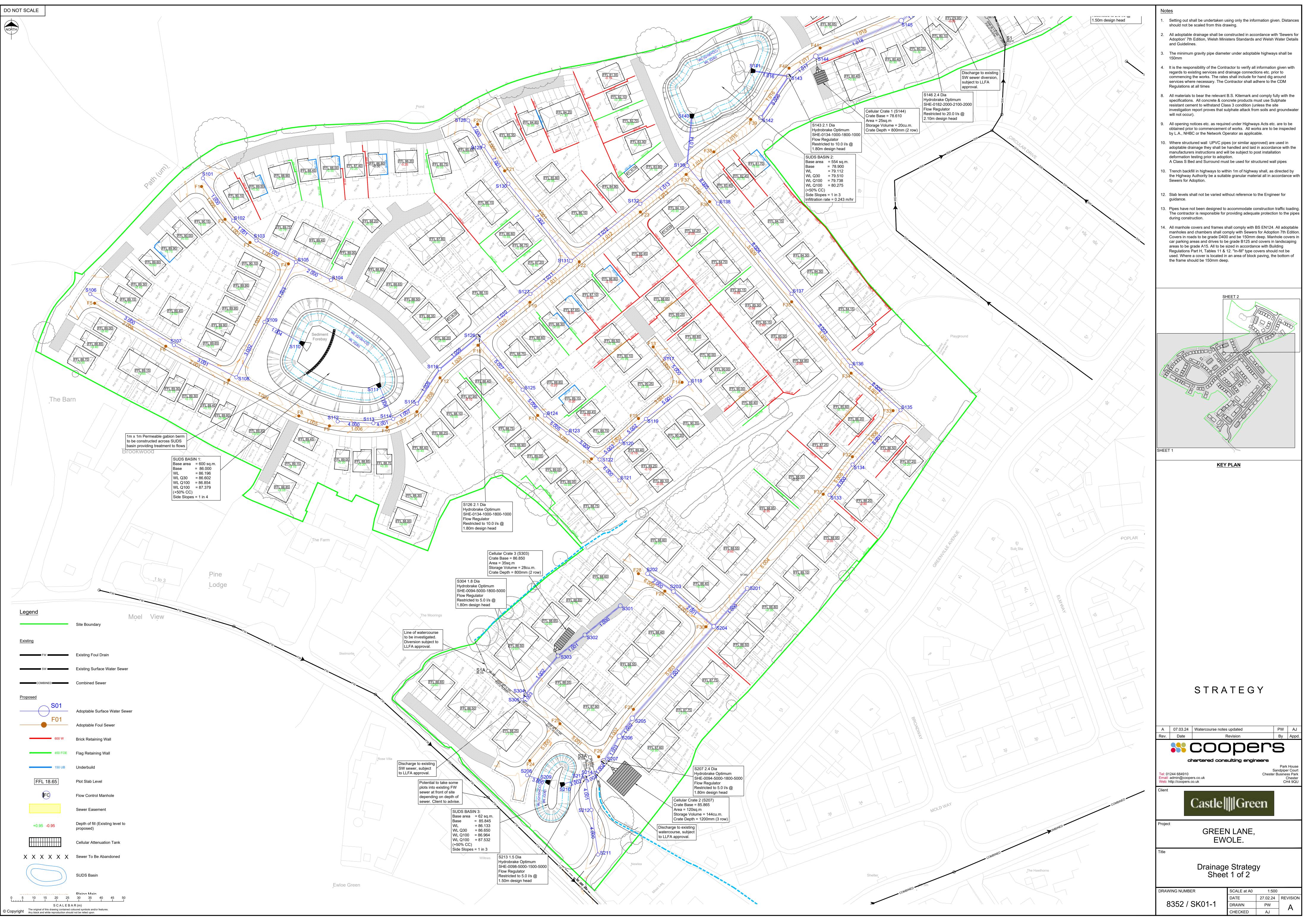
Reference Drawings

Drawing No.	Revision	Title
18030-703	-	Topographical Survey (South)
18030-704	-	Topographical Survey (North)
-	-	Welsh Water Sewer Map
8271 / SK01-1	А	Drainage Strategy. Sheet 1 of 2
8271 / SK01-2	А	Drainage Strategy. Sheet 2 of 2
8271 / SK04-1	-	Constraints Plan. Sheet 1 of 2
8271 / SK04-2	-	Constraints Plan. Sheet 2 of 2
8271 / SK03	-	SUDS Details



"Copyright in this drawing remains with the architect. Responsibility is not accepted for errors made by others in scaling from this drawing. All construction information should be taken from figured dimensions only. Check all dimensions on site. In case of any discrepancy, refer query to the architect."


Pider 92.55 Dwelling


TOPOGRAPHICAL SURVEY PLAN 2019 / 2020, by Cheshire Surveys Date Rev Description CORE DESIGN (UK) LIMITED The Studio, 21 Shaw Road, Heaton Moor Stockport SK4 4AG email architects@core-design.net website www.core-design.net telephone 0161 443 4000 O R E Land off Holywell Road / Green Lane Ewloe Green CH5 3HA BOUNDARY LINES AS EXISTING - SOUTHERN BOUNDARY 1 of 2 DRAWING NO. DATE DRAWN — 18030-703 SCALE 1:500 @ A0 REV. _____

TOPOGRAPHICAL SURVEY PLAN 2019 / 2020, by Cheshire Surveys

Date CORE DESIGN (UK) LIMITED The Studio, 21 Shaw Road, Heaton Moor Stockport SK4 4AG email architects@core-design.net website www.core-design.net telephone 0161 443 4000 ORE Land off Holywell Road / Green Lane Ewloe Green CH5 3HA BOUNDARY LINES AS EXISTING - NORTHERN BOUNDARY drawing no. 18030-704

- Setting out shall be undertaken using only the information given. Distances

- investigation report proves that sulphate attack from soils and groundwater

- the Highway Authority be a suitable granular material all in accordance with
- The contractor is responsible for providing adequate protection to the pipes
- manholes and chambers shall comply with Sewers for Adoption 7th Edition. Covers in roads to be grade D400 and be 150mm deep. Manhole covers in car parking areas and drives to be grade B125 and covers in landscaping

Park House Sandpiper Court Chester Business Park Chester CH4 9QU

27.02.24 REVISION

© Copyright The original of this drawing contained coloured symbols and/or features. Any black and white reproduction should not be relied upon.

n Manhole			Downstream Manhol	e
ert	Cover	Number	Invert	Cover
88.22	89.65	S102	88.09	89.94
88.09	89.94	S103	88.01	89.92
88.01	89.92	S105	87.47	89.51
87.47	89.51	S109	86.69	89.30
86.61	89.30	S110	86.55	88.93
86.17	88.93	S111	86.02	88.49
86.02	88.49	S114	85.98	88.64
85.98	88.64	S115	85.93	88.38
85.86	88.38	S116	85.81	88.06
85.81	88.06	S126	85.76	88.22
85.76	88.22	S127	85.58	87.72
85.58	87.72	S131	83.95	86.55
82.07	86.55	S132	81.94	84.55
81.94	84.55	S139	81.56	83.21
79.87	83.21 81.17	S140	79.82	81.17
79.52 78.90		S141	78.90 78.81	80.50
	80.50	S143		80.88
78.81 78.05	80.88 80.68	S144 S145	78.72 77.94	80.68 80.16
78.05	80.68 80.16	S145 S146	77.94	79.97
77.91	79.97	S140 S147	77.85	79.72
87.72	89.07	S147 S105	87.55	89.51
87.29	88.72	S105 S107	87.03	89.27
87.03	89.27	S107	86.85	89.65
86.85	89.65	S100	86.69	89.30
86.27	89.15	S113	86.18	88.83
86.18	88.83	S114	86.13	88.64
87.57	89.70	S118	87.48	90.17
87.48	90.17	S119	87.34	90.15
87.34	90.15	S120	87.25	89.64
87.25	89.64	S122	87.17	89.10
87.10	89.10	S123	87.02	89.34
87.02	89.34	S124	86.97	89.08
86.89	89.08	S125	86.83	88.73
86.83	88.73	S126	85.76	88.22
87.15	88.67	S122	87.10	89.10
82.60	85.16	S129	82.52	85.38
82.52	85.38	S130	82.40	85.72
82.33	85.72	S131	82.14	86.55
86.76	88.11	S134	85.91	87.26
85.83	87.26	S135	84.47	85.89
84.39	85.89	S136	83.01	84.66
83.01	84.66	S137	82.84	84.48
82.84	84.48	S138	82.01	83.65
81.94	83.65	S139	81.56	83.21
78.86	81.35	S143	78.81	80.88
				
n Manhole ert	Cover	Number	Downstream Manho Invert	le Cover
86.26	88.80	S204	86.20	88.05
86.05	88.05	S205	85.92	87.85
85.92	87.85	S206	85.89	87.74
85.89	87.74	S207	85.86	87.77
85.86	87.77	S214	85.82	87.86
85.82	87.86	S215	85.79	86.40
86.30	88.36	S203	86.26	88.19
86.26	88.19	S204	86.20	88.05
86.26	87.94	S209	86.23	88.00
85.93	88.00	S210	85.88	88.00
85.88	88.00	S213	85.84	87.90
85.84	87.90	S214	85.82	87.86
86.05	87.68	S212	85.93	87.92
85 03	87.02	\$212	85.84	87.00

	vork 3									
Pipe	Diameter	Gradient	Pipe	Pipe	ι	Jpstream Manhole		Do	wnstream Manho	le
Code	(mm)	(1:)	Туре	Length	Number	Invert	Cover	Number	Invert	Cover
1.000	600	400	Circular	20.431	S301	86.21	88.15	S302	86.16	88.0
1.001	600	400	Circular	15.208	S302	86.16	88.00	S303	86.12	88.0
1.002	600	402	Circular	22.493	S303	86.12	88.00	S304	86.06	88.2
1.003	225	171	Circular	2.707	S304	86.06	88.24	S305	86.01	88.2
STORM Net	work 4									
Pipe	Diameter	Gradient	Pipe	Pipe		Upstream Manhole	<u>,</u>	D	ownstream Manho	le
Code	(mm)	(1:)	Туре	Length	Number	Invert	Cover	Number	Invert	Cover
1.000	750	400	Circular	21.616	S401	77.02	79.20	S402	76.97	79.
1.001	750	400	Circular	24.686	S402	76.97	79.00	S403	76.90	78.
1.002	225	171	Circular	8.741	S403	76.90	78.90	S404	76.85	78.
STORM Ne		Cradiant	Dine	Dino		Lingtroom Monhol)ourotroom Monh	
STORM Ne Pipe Code	twork 5 Diameter (mm)	Gradient (1:)	Pipe Type	Pipe Length	Number	Upstream Manhol Invert	e Cover	C Number	ownstream Manh Invert	ole Cover
Pipe	Diameter		1 1	1	Number S501					
Pipe Code 1.000	Diameter (mm) 225	(1:)	Туре	Length		Invert	Cover	Number	Invert	Cover
Pipe Code 1.000 STORM Net	Diameter (mm) 225 work 6	(1:) 170	Type Circular	Length 7.784	S501	Invert 77.06	Cover 79.40	Number S502	Invert 77.02	Cover 79
Pipe Code 1.000	Diameter (mm) 225	(1:)	Туре	Length	S501	Invert	Cover 79.40	Number S502	Invert	Cover 79
Pipe Code 1.000 STORM Net Pipe	Diameter (mm) 225 work 6 Diameter	(1:) 170 Gradient	Type Circular Pipe	Length 7.784 Pipe	S501	Invert 77.06	Cover 79.40	Number S502 D	Invert 77.02 ownstream Manho	Cover 79 Die Cover
Pipe Code 1.000 STORM Net Pipe Code	Diameter (mm) 225 work 6 Diameter (mm)	(1:) 170 Gradient (1:)	Type Circular Pipe Type	Length 7.784 Pipe Length	S501 Number	Invert 77.06 Upstream Manhole Invert	Cover 79.40	Number S502 D Number	Invert 77.02 ownstream Manho Invert	Cover 79 Dile Cover 78.
Pipe Code 1.000 STORM Net Pipe Code 1.000	Diameter (mm) 225 work 6 Diameter (mm) 750	(1:) 170 Gradient (1:) 400	Type Circular Pipe Type Circular	Length 7.784 Pipe Length 13.730	S501 Number S601	Invert 77.06 Upstream Manhole Invert 76.73	Cover 79.40 e Cover 78.76	Number S502 Number S602	Invert 77.02 ownstream Manho Invert 76.69	Cover 79 Die
Pipe Code 1.000 STORM Net Pipe Code 1.000 1.001	Diameter (mm) 225 work 6 Diameter (mm) 750 750	(1:) 170 Gradient (1:) 400 400	Type Circular Pipe Type Circular Circular	Length 7.784 Pipe Length 13.730 17.121	S501 Number S601 S602	Invert 77.06 Upstream Manhole Invert 76.73 76.69	Cover 79.40 Cover 78.76 78.84	Number S502 Number S602 S603	Invert 77.02 ownstream Manho Invert 76.69 76.65	Cover 79 Dele Cover 78. 78. 78.
Pipe Code 1.000 STORM Net Pipe Code 1.000 1.001 1.001	Diameter (mm) 225 work 6 Diameter (mm) 750 750 750 750	(1:) 170 Gradient (1:) 400 400 400	Type Circular Pipe Type Circular Circular Circular	Length 7.784 Pipe Length 13.730 17.121 20.657	S501 Number S601 S602 S603	Invert 77.06 Upstream Manhole Invert 76.73 76.69 76.65	Cover 79.40 e Cover 78.76 78.84 78.96	Number S502 Number S602 S603 S604	Invert 77.02 ownstream Manho Invert 76.69 76.65 76.60	Cover 79 Dele Cover 78. 78. 78. 78.
Pipe Code 1.000 STORM Net Pipe Code 1.000 1.001 1.001 1.002 1.003	Diameter (mm) 225 work 6 Diameter (mm) 750 750 750 750 750 750 750 750 750 750 750 750	(1:) 170 Gradient (1:) 400 400 400 400	Type Circular Pipe Type Circular Circular Circular Circular Circular	Length 7.784 Pipe Length 13.730 17.121 20.657 22.715	S501 Number S601 S602 S603 S604	Invert 77.06 Upstream Manhole Invert 76.73 76.69 76.65 76.60	Cover 79.40 Cover 78.76 78.84 78.96 78.81	Number S502 D Number S602 S603 S604 S606	Invert 77.02 ownstream Manho Invert 76.69 76.65 76.60 76.54	Cover 79 0le Cover 78. 78. 78. 78. 78. 78.

Pipe	Diameter	Gradient	Pipe	Pipe		Upstream Manhole		D	ownstream Manho	le
Code	(mm)	(1:)	Туре	Length	Number	Invert	Cover	Number	Invert	Cover
1.000	150	80	Circular	17.997	F1	87.88	89.68	F2	87.66	89
1.001	150	80	Circular	15.168	F2	87.66	89.91	F3	87.47	89
1.002	150	135	Circular	19.576	F3	87.47	89.94	F4	87.32	89
1.003	150	50	Circular	58.182	F4	87.32	89.57	F7	86.16	89
1.004	150	135	Circular	35.013	F7	86.16	89.62	F8	85.90	89
1.005	150	135	Circular	14.317	F8	85.90	89.50	F9	85.79	8
1.006	150	135	Circular	25.662	F9	85.79	89.22	F10	85.60	8
1.007	150	135	Circular	14.962	F10	85.60	88.71	F11	85.49	8
1.008	150	135	Circular	18.247	F11	85.49	88.42	F12	85.36	8
1.009	150	135	Circular	22.310	F12	85.36	88.09	F18	85.19	8
1.010	150	135	Circular	29.988	F18	85.19	88.18	F19	84.97	8
1.011	150	17	Circular	28.429	F19	84.97	87.85	F22	83.26	8
1.012	150	135	Circular	35.118	F22	81.76	86.42	F23	81.50	8
1.013	150	88	Circular	26.368	F23	81.50	84.67	F37	81.20	8
1.014	225	170	Circular	15.907	F37	79.70	83.35	F38	79.61	8
1.015	225	170	Circular	21.870	F38	79.61	82.55	F39	79.48	8
1.016	225	170	Circular	28.497	F39	79.48	81.49	F40	79.31	8
1.017	225	167	Circular	16.516	F40	79.31	80.84	F41	79.21	8
1.018	225	104	Circular	40.495	F41	79.09	80.63	F42	78.70	8
1.019	225	52	Circular	11.690	F42	78.70	80.12	F43	78.48	7
1.020	225	37	Circular	8.828	F43	78.48	79.90	F44	78.24	7
1.021	225	24	Circular	18.450	F44	78.24	79.66	F45	77.45	7
1.022	225	163	Circular	24.639	F45	77.45	79.06	F46	77.30	7
1.023	225	171	Circular	16.198	F46	77.30	78.73	F47	77.21	7
1.024	225	170	Circular	13.058	F47	77.21	78.92	F48	77.13	7
1.025	225	170	Circular	25.057	F48	77.13	78.97	F49	76.98	7
1.026	225	170	Circular	17.392	F49	76.98	78.77	F50	76.88	7
1.027	225	170	Circular	30.367	F50	76.88	78.55	F51	76.70	7
1.028	225	170	Circular	10.106	F51	76.70	78.83	F52	76.64	7
1.029	225	169	Circular	3.548	F52	76.64	78.90	F53	76.62	7
2.000	150	80	Circular	37.015	F5	87.02	88.77	F6	86.55	8
2.001	150	80	Circular	31.871	F6	86.55	89.23	F7	86.16	8
3.000	150	80	Circular	20.352	F13	87.45	89.33	F14	87.20	ç
3.001	150	80	Circular	25.231	F14	87.20	90.14	F15	86.88	ç
3.002	150	135	Circular	27.612	F15	86.88	90.10	F16	86.68	ε
3.003	150	135	Circular	30.791	F16	86.68	89.19	F17	86.45	8
3.004	150	33	Circular	41.039	F17	86.45	89.02	F18	85.19	ε
4.000	150	135	Circular	23.988	F20	83.02	85.21	F21	82.84	8
4.001	150	48	Circular	52.395	F21	82.84	85.63	F22	81.76	8
5.000	150	135	Circular	21.233	F24	86.66	88.01	F25	86.50	8
5.001	150	58	Circular	22.696	F25	86.50	88.00	F26	86.11	8
5.002	150	53	Circular	26.194	F26	86.11	87.76	F27	85.61	8
5.003	150	135	Circular	48.919	F27	85.61	87.90	F30	85.25	8
5.004	150	135	Circular	78.824	F30	85.25	87.97	F31	84.67	8
5.005	150	150	Circular	21.128	F31	84.67	88.19	F32	84.53	8
5.006	150	40	Circular	27.386	F32	84.53	87.13	F33	83.85	8
5.007	150	21	Circular	25.060	F33	83.85	85.86	F34	82.65	6
5.008	150	135	Circular	41.365	F34	82.65	84.76	F35	82.34	8
5.009	150	65	Circular	57.670	F35	82.34	84.44	F36	81.46	8
5.010	150	61	Circular	15.970	F36	81.46	83.57	F37	81.20	8
5.010 6.000	150	80	Circular	15.970	F30 F28	87.04	00.07 88 30	F37 F20	86.86	c s

Site Boundary

Existing Foul Drain

Existing Surface Water Sewer

COMBINED Combined Sewer

Adoptable Surface Water Sewer

Adoptable Foul Sewer

Brick Retaining Wall

600 W

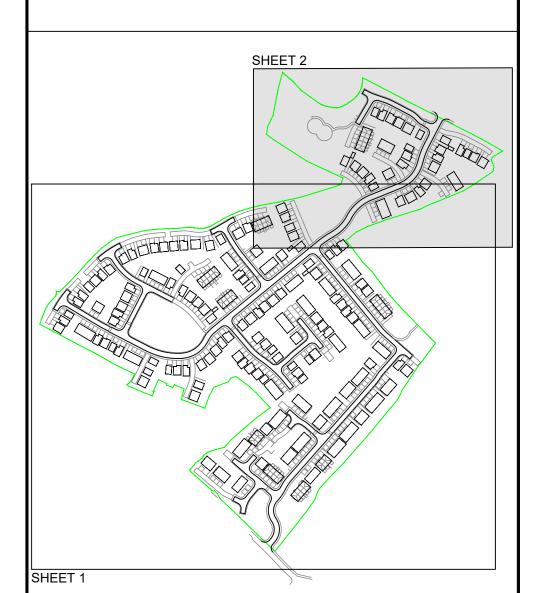
+0.95 -0.95

X X X X X X Sewer To Be Abandoned

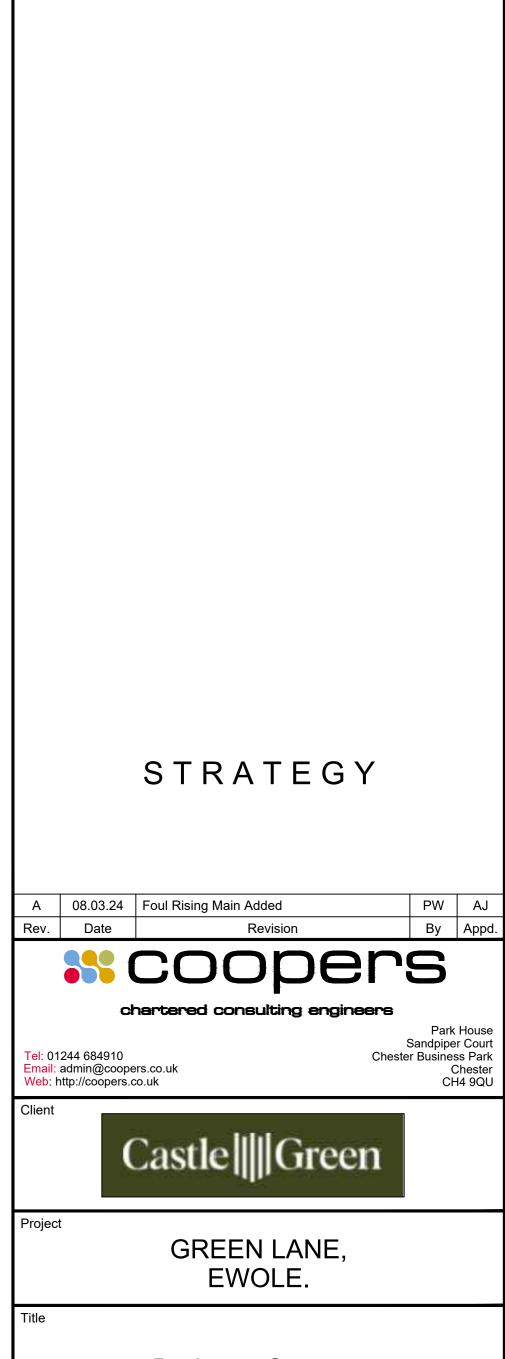
450 FOE Flag Retaining Wall Underbuild 50 UB Plot Slab Level Flow Control Manhole Sewer Easement

Depth of fill (Existing level to

proposed)


Cellular Attenuation Tank

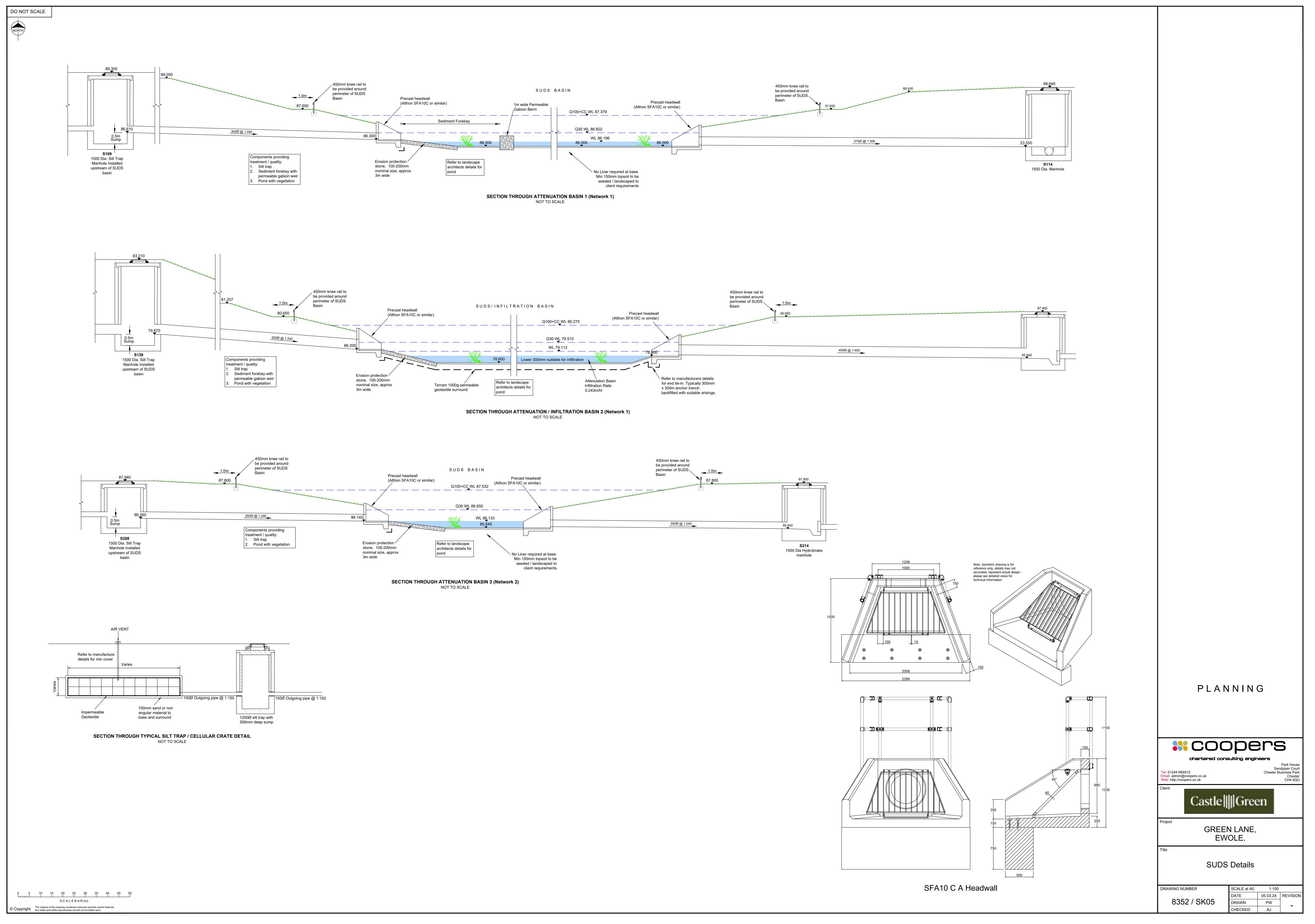
SUDS Basin


Indicative Area To Be Regraded

Notes

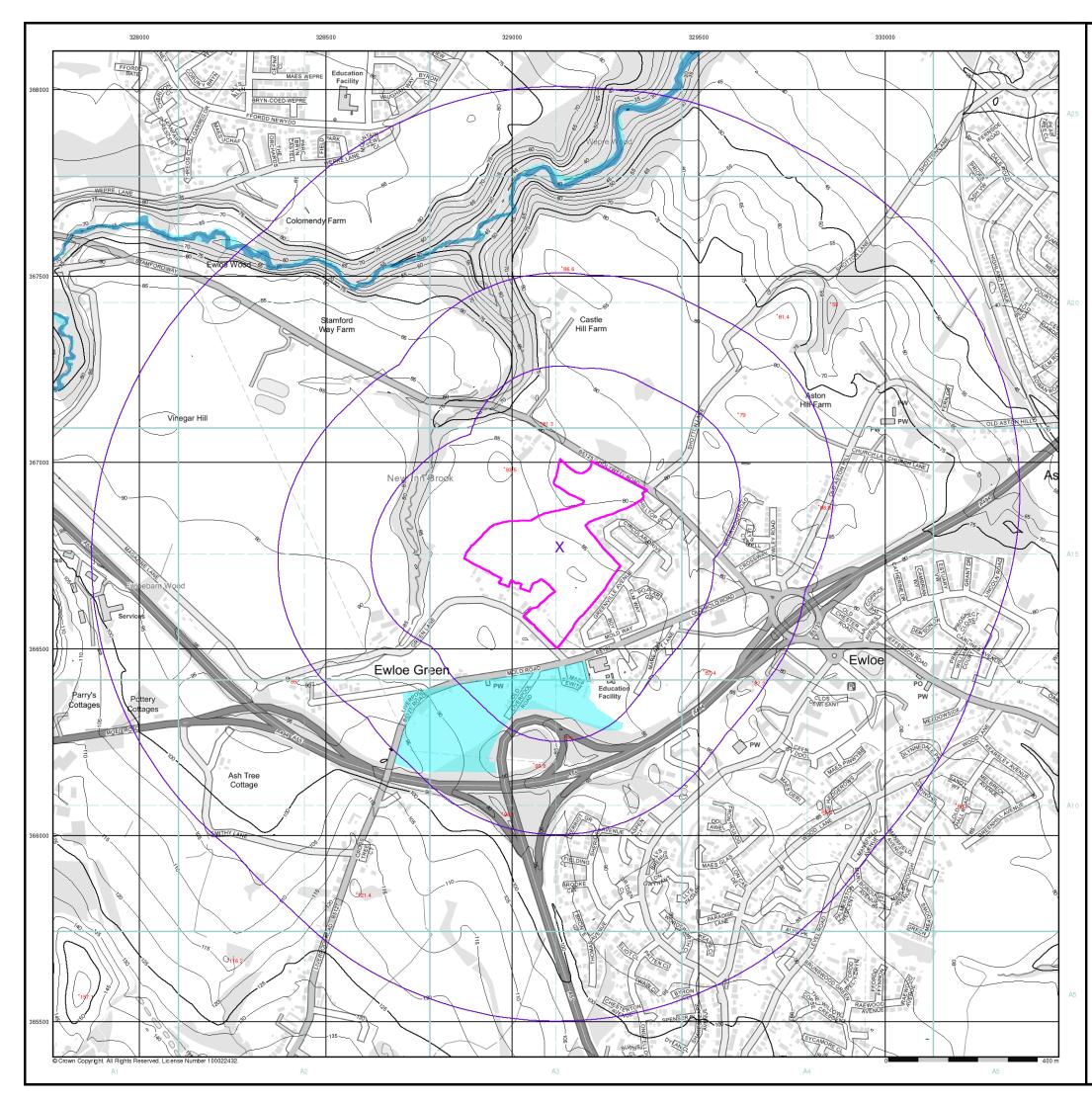
- Setting out shall be undertaken using only the information given. Distances should not be scaled from this drawing.
- All adoptable drainage shall be constructed in accordance with 'Sewers for Adoption' 7th Edition, Welsh Ministers Standards and Welsh Water Details and Guidelines.
- The minimum gravity pipe diameter under adoptable highways shall be 150mm
- It is the responsibility of the Contractor to verify all information given with regards to existing services and drainage connections etc. prior to commencing the works. The rates shall include for hand dig around services where necessary. The Contractor shall adhere to the CDM Regulations at all times
- All materials to bear the relevant B.S. Kitemark and comply fully with the specifications. All concrete & concrete products must use Sulphate resistant cement to withstand Class 3 condition (unless the site investigation report proves that sulphate attack from soils and groundwater will not occur).
- All opening notices etc. as required under Highways Acts etc. are to be obtained prior to commencement of works. All works are to be inspected by L.A., NHBC or the Network Operator as applicable.
- 0. Where structured wall UPVC pipes (or similar approved) are used in adoptable drainage they shall be handled and laid in accordance with the manufacturers instructions and will be subject to post installation deformation testing prior to adoption. A Class S Bed and Surround must be used for structured wall pipes
- 0. Trench backfill in highways to within 1m of highway shall, as directed by the Highway Authority be a suitable granular material all in accordance with Sewers for Adoption.
- 12. Slab levels shall not be varied without reference to the Engineer for guidance.
- 3. Pipes have not been designed to accommodate construction traffic loading. The contractor is responsible for providing adequate protection to the pipes during construction.
- 4. All manhole covers and frames shall comply with BS EN124. All adoptable manholes and chambers shall comply with Sewers for Adoption 7th Edition. Covers in roads to be grade D400 and be 150mm deep. Manhole covers in car parking areas and drives to be grade B125 and covers in landscaping areas to be grade A15. All to be sized in accordance with Building Regulations Part H, Tables 11 & 12. "In-fill" type covers should not be used. Where a cover is located in an area of block paving, the bottom of the frame should be 150mm deep.

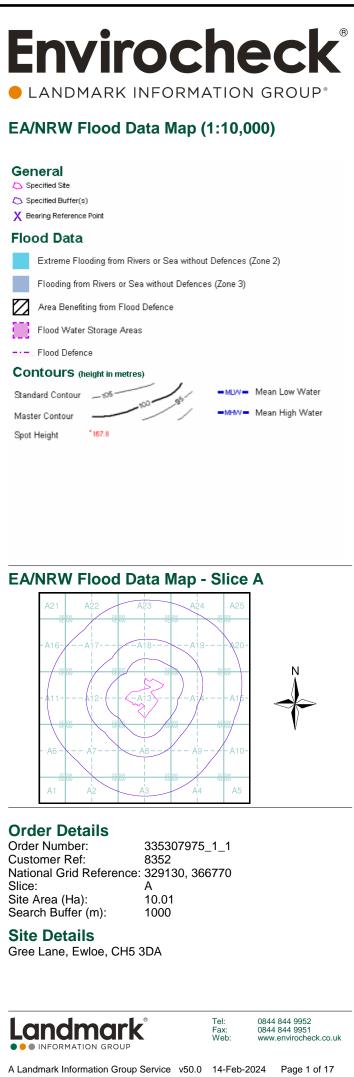
KEY PLAN

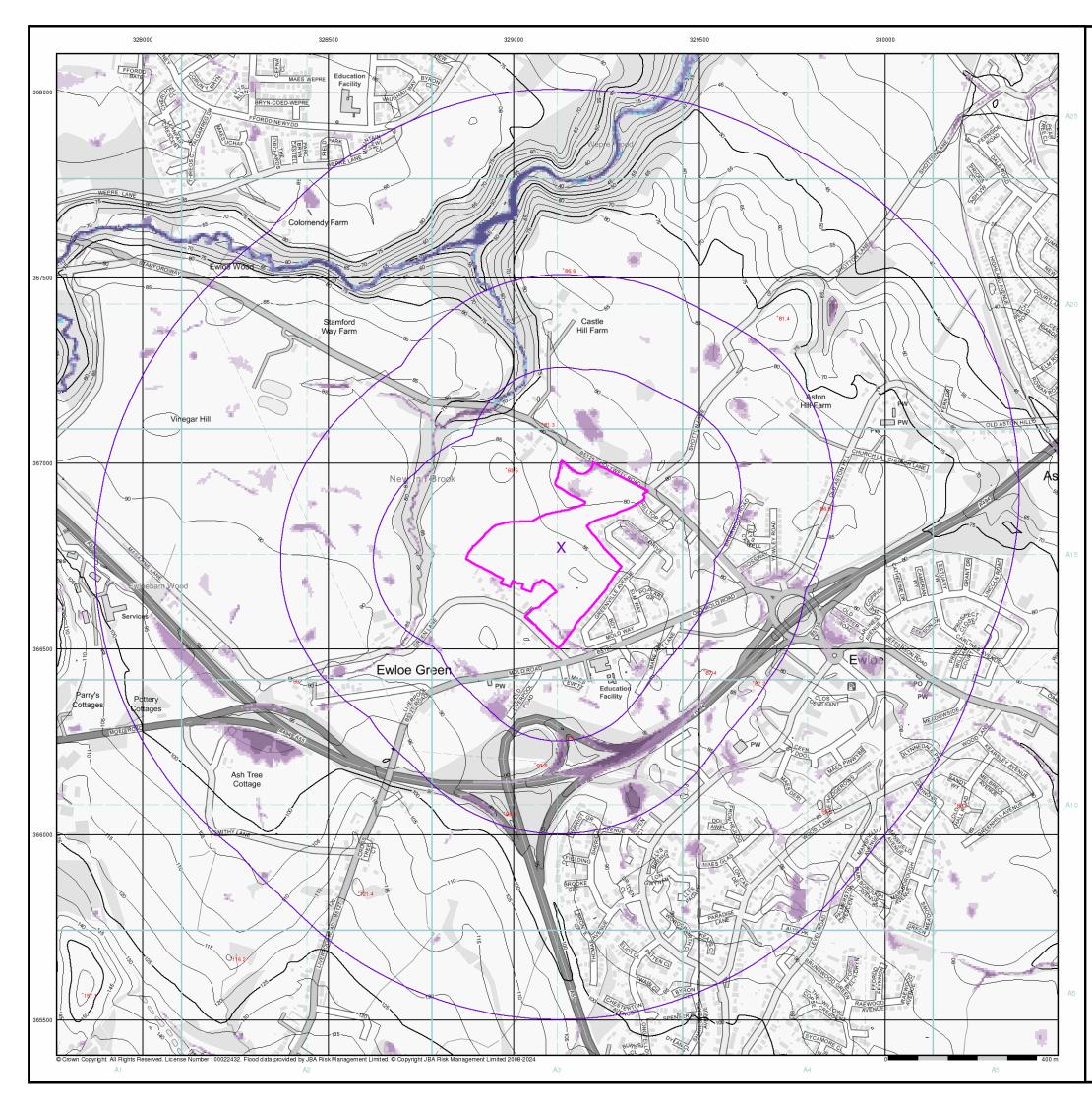


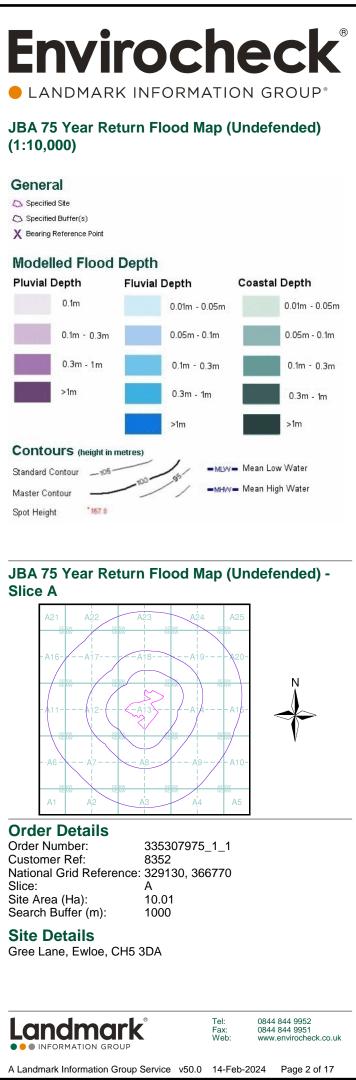
Drainage Strategy

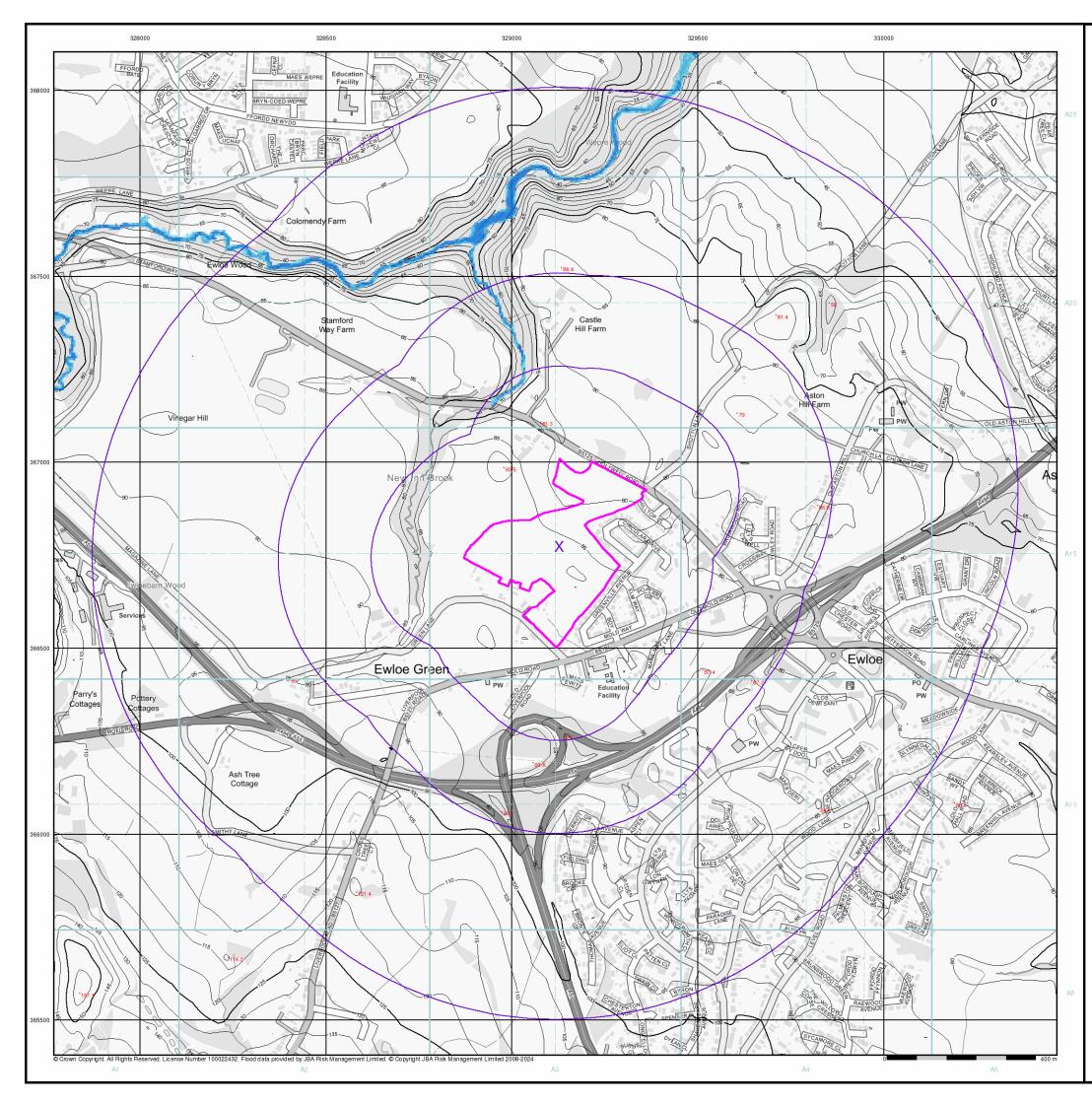
Sheet	t 2 of 2	J	
DRAWING NUMBER	SCALE at A0	1:500	
	DATE	27.02.24	REVISION
8352 / SK01-2	DRAWN	PW	Δ
	CHECKED	AJ	

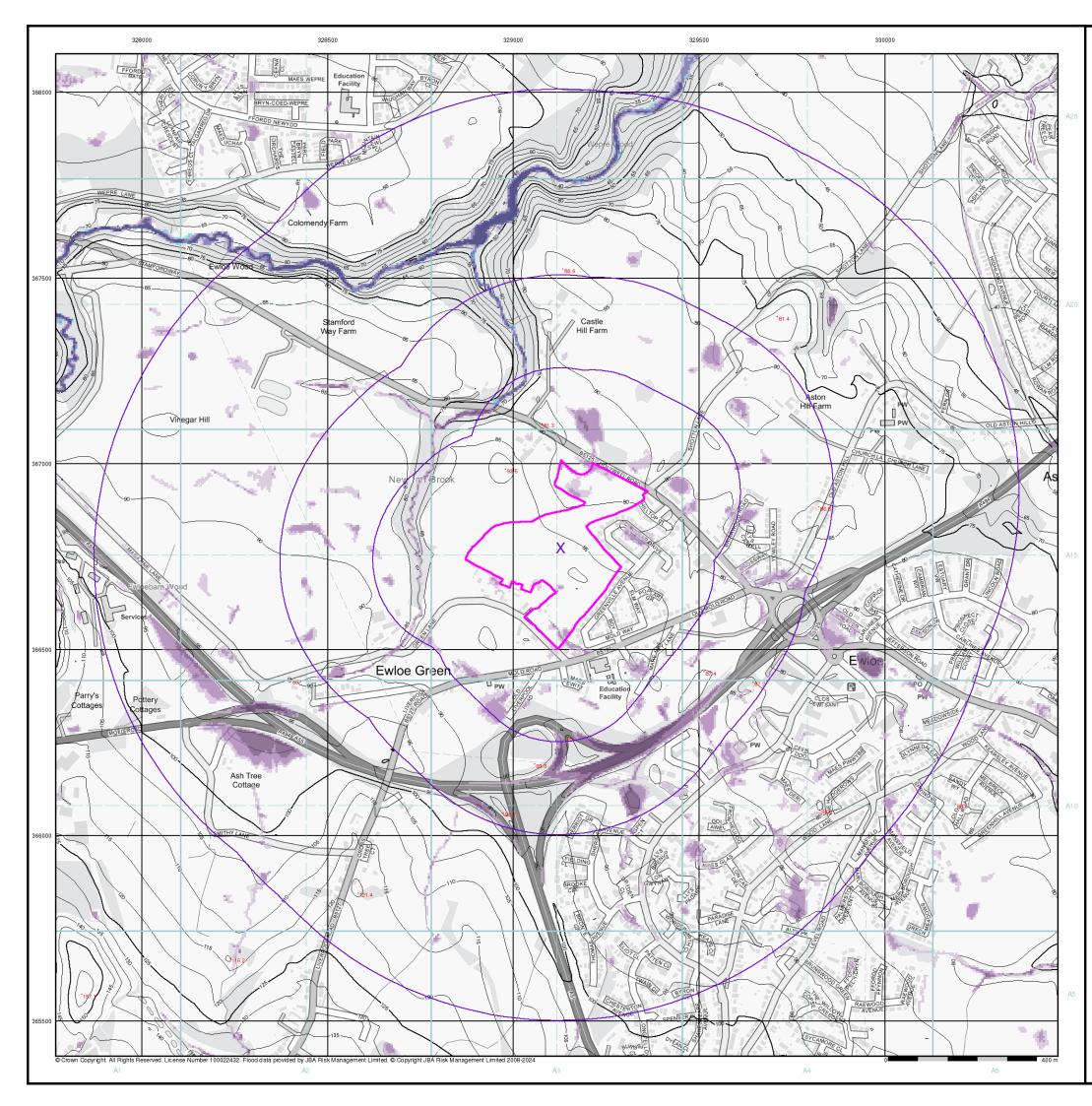


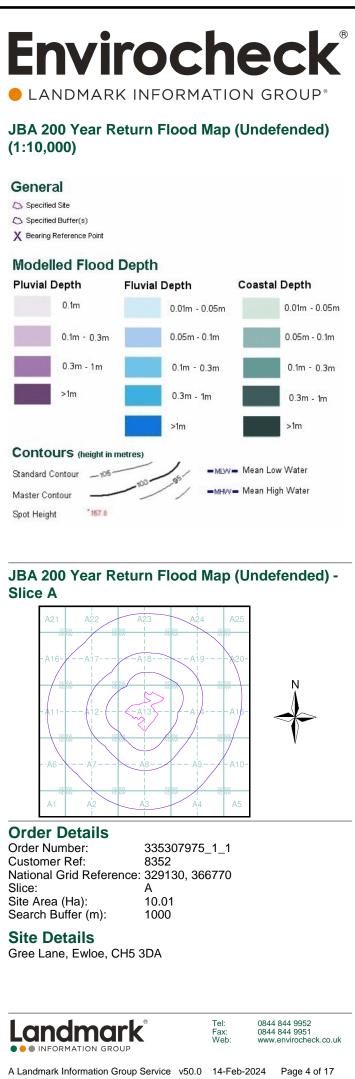

Flood Consequences Assessment for Land off Holywell Road, Ewloe, Flintshire

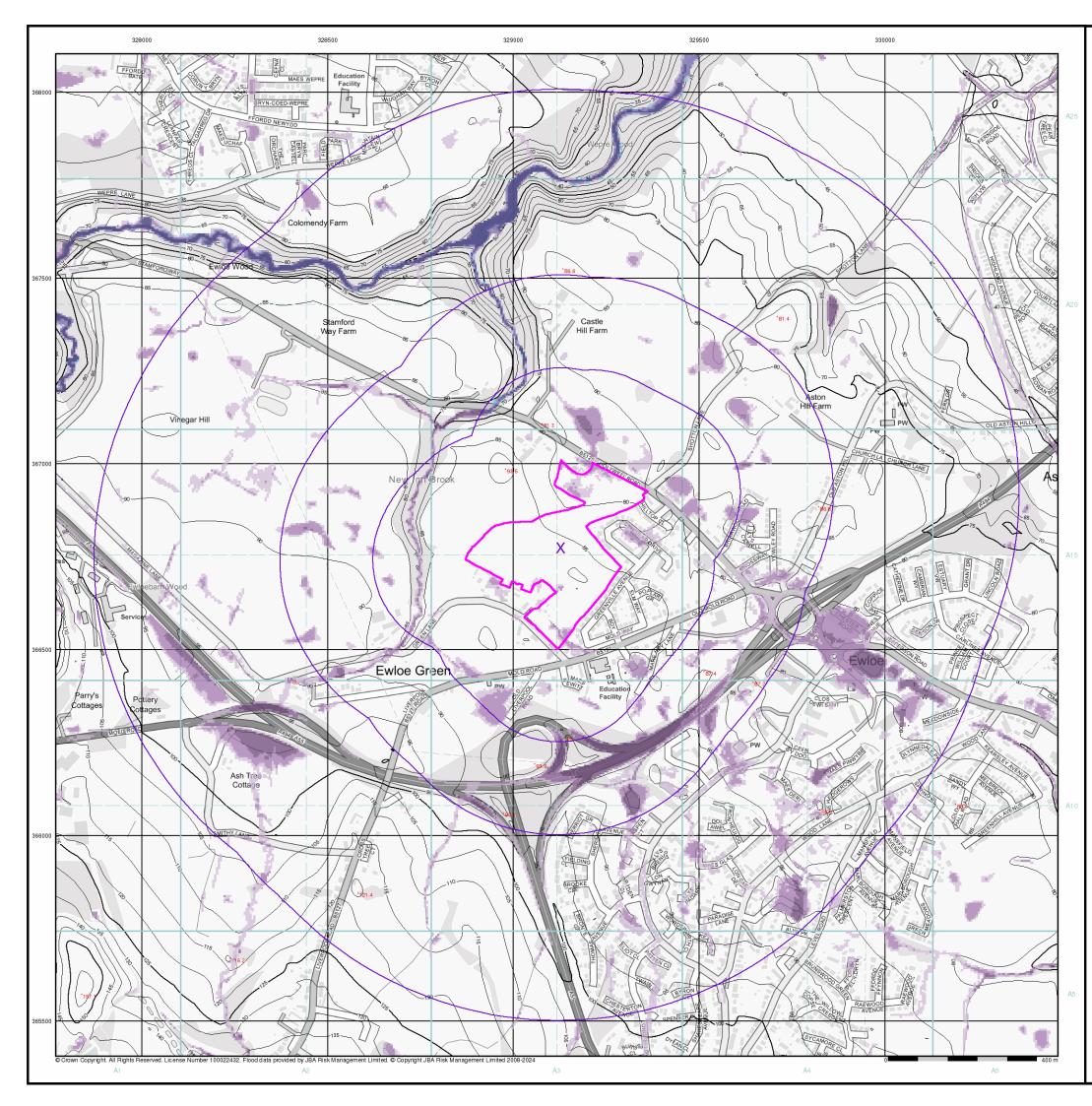

Appendix 2

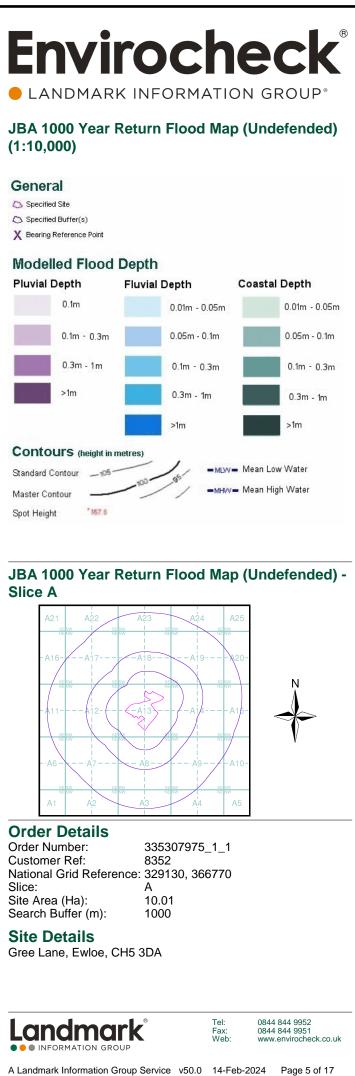

Envirocheck Flood Screening Report

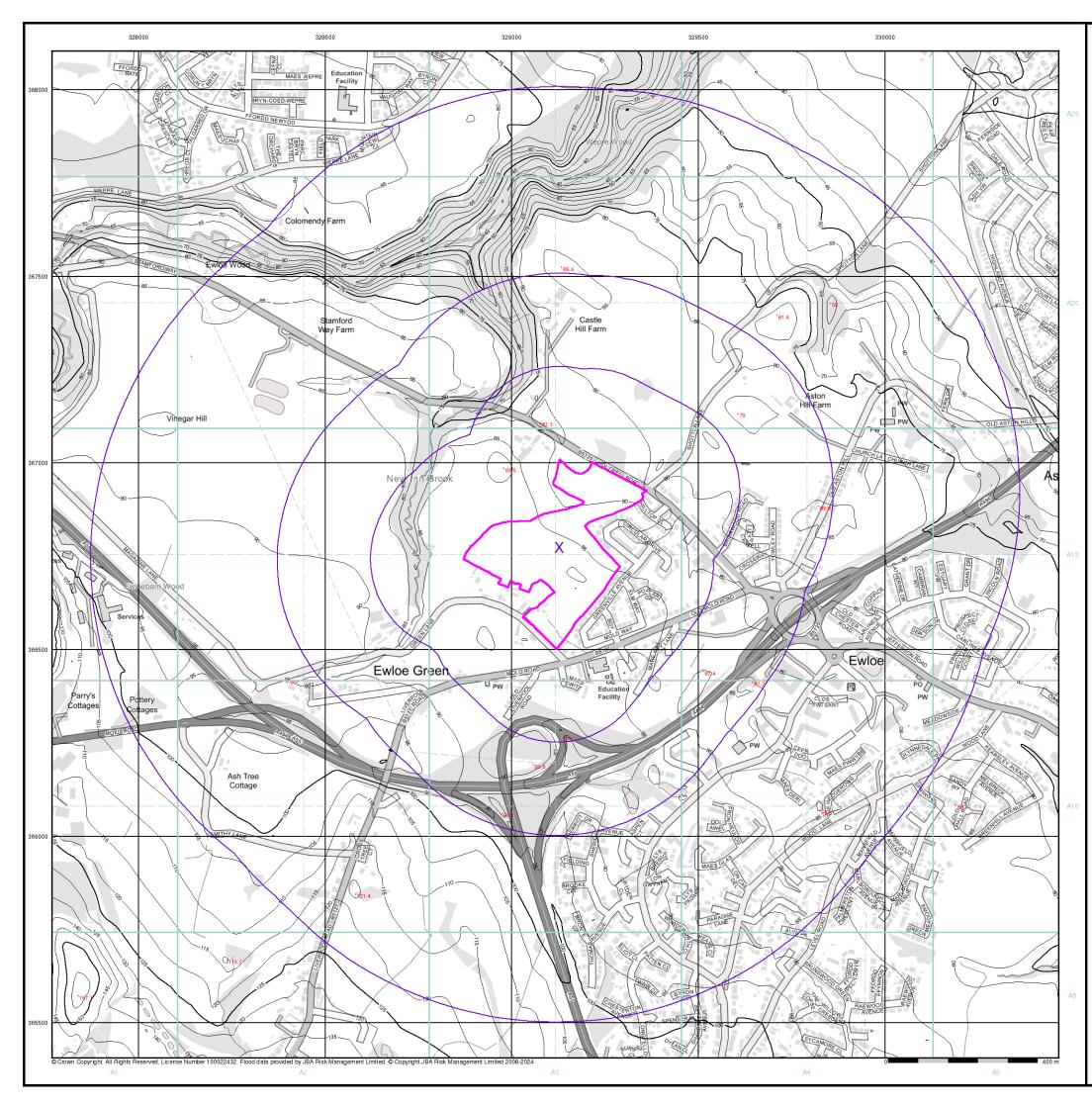

Order Number: 335307975_1_1

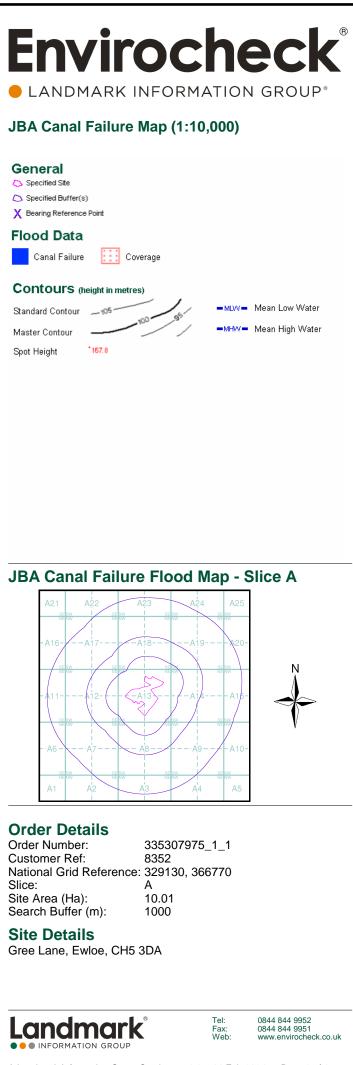


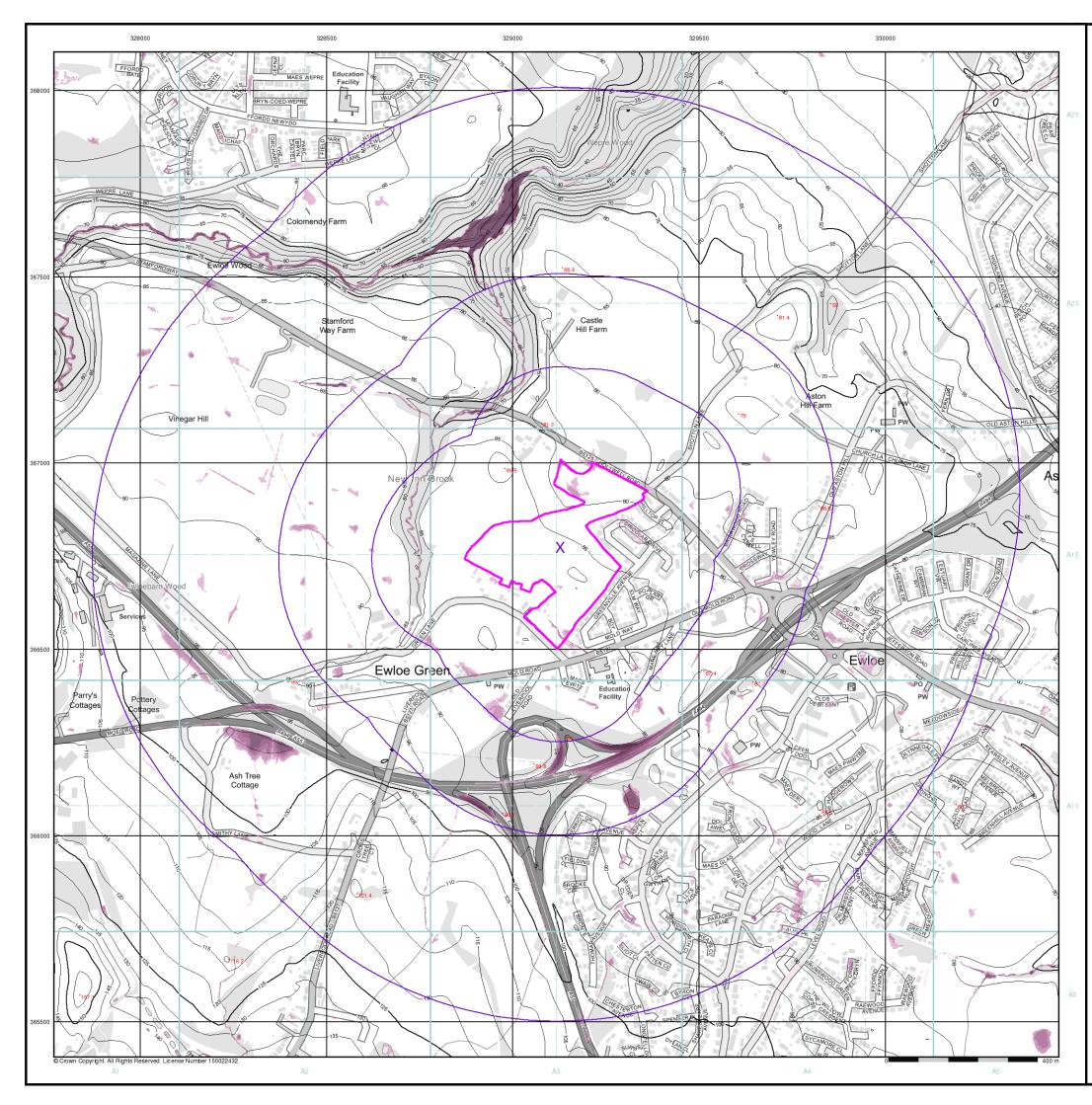


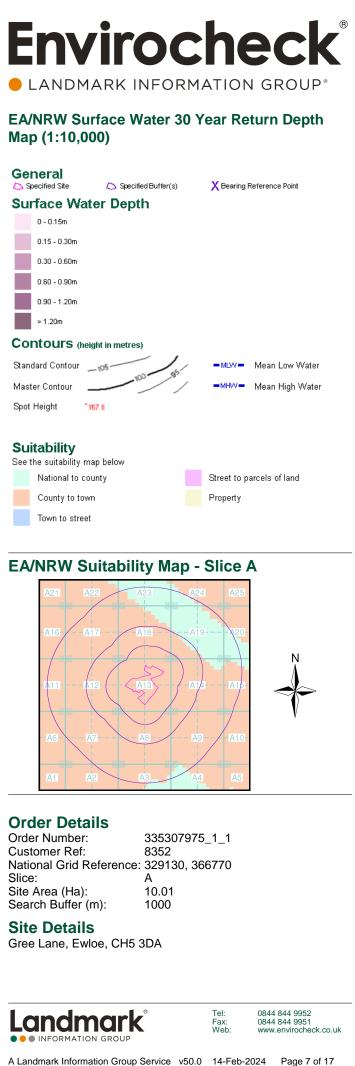


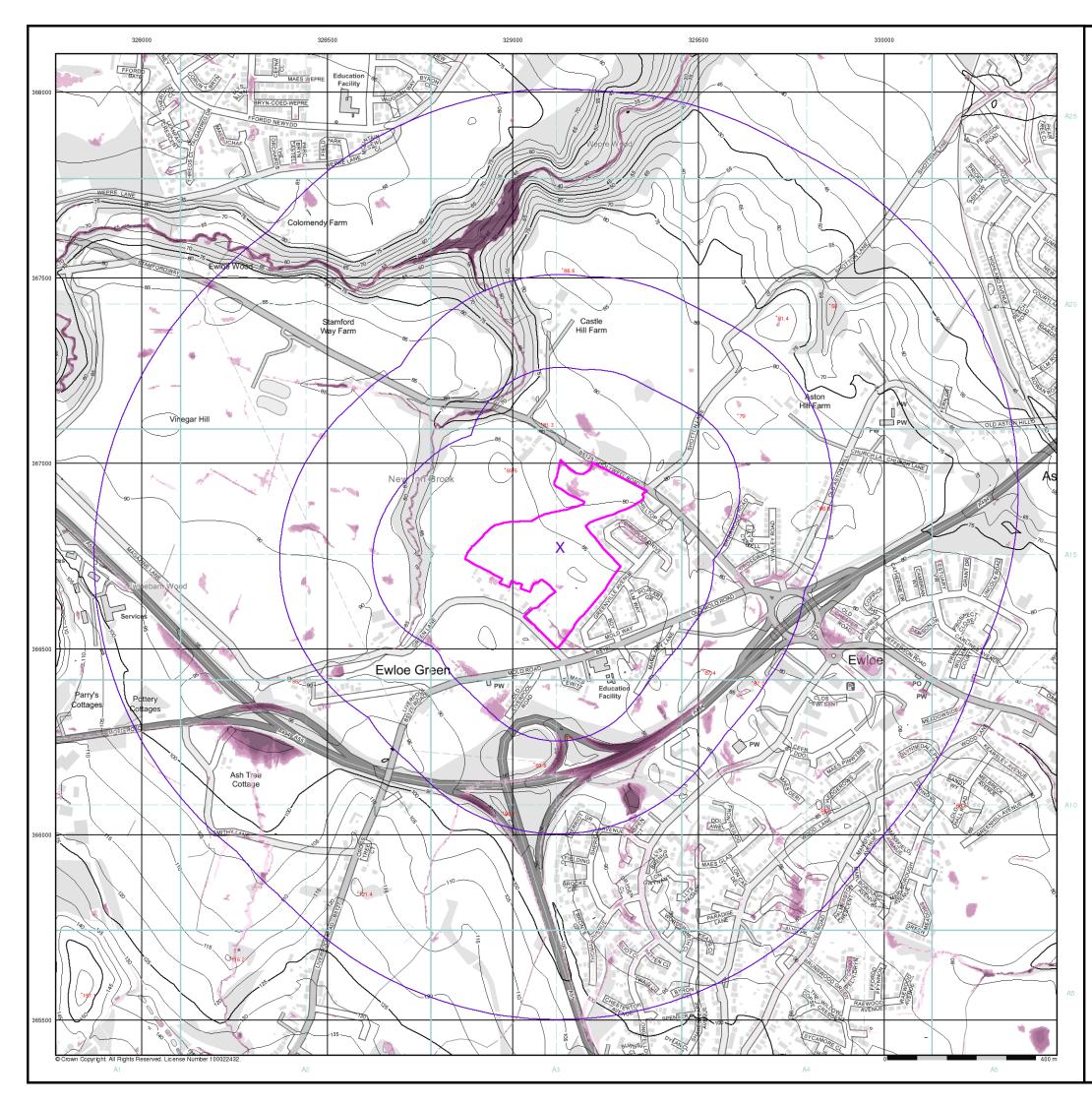



A Landmark Information Group Service v50.0 14-Feb-2024 Page 3 of 17

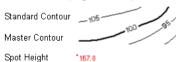








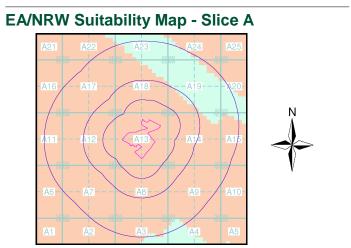
A Landmark Information Group Service v50.0 14-Feb-2024 Page 6 of 17



Econocic cocheck (**) ■ LANDMARK INFORMATION GROUP* ■ LANDMARK INFORMARK INFORMATION GROUP* ■ LANDMAR

0.90 - 1.20m > 1.20m

Contours (height in metres)



Suitability

See the suitability map below
National to county
County to town
Town to street

MLW Mean Low Water

-MHV- Mean High Water

Order Details

 Order Number:
 335307975_1_1

 Customer Ref:
 8352

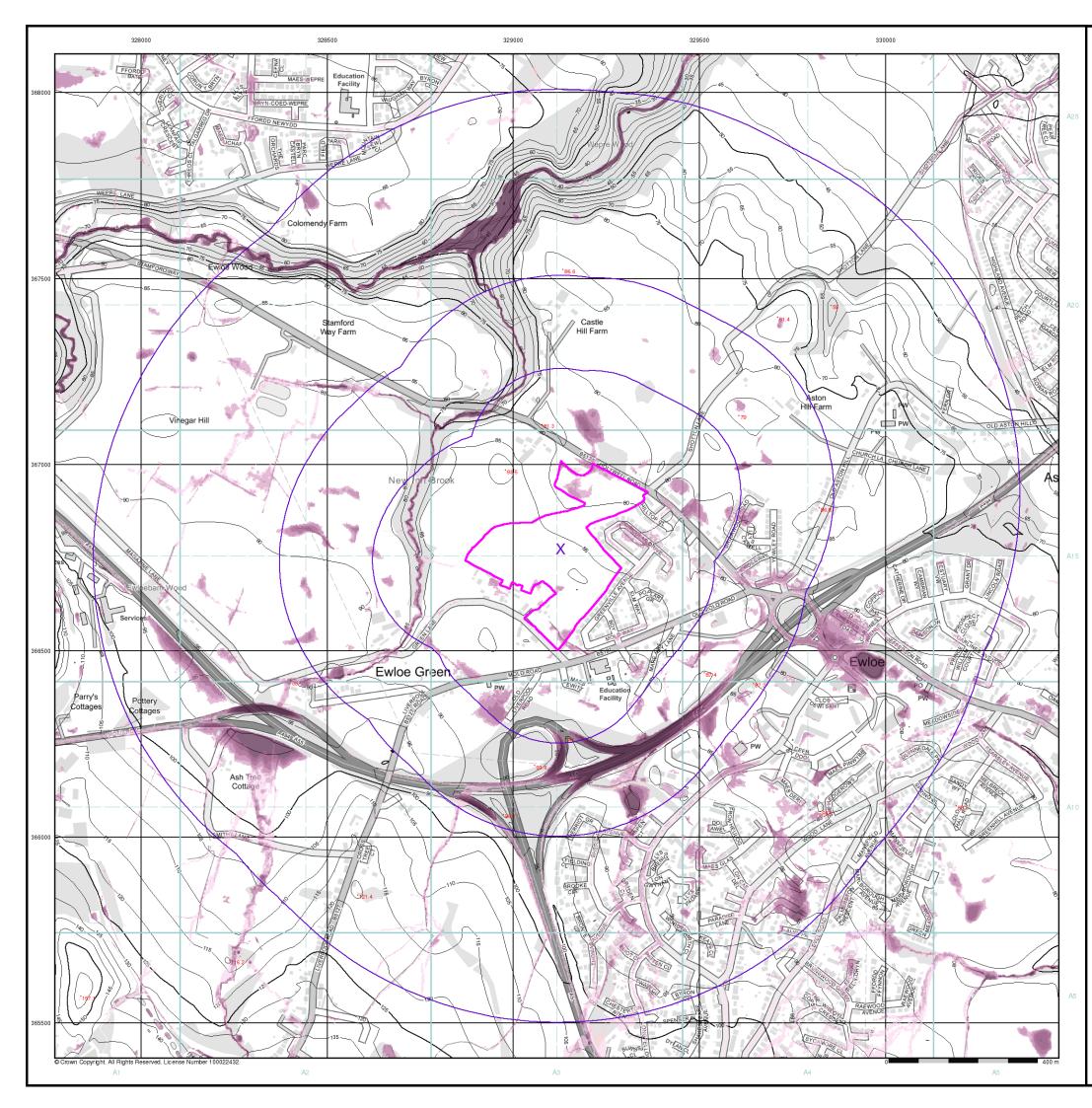
 National Grid Reference:
 329130, 366770

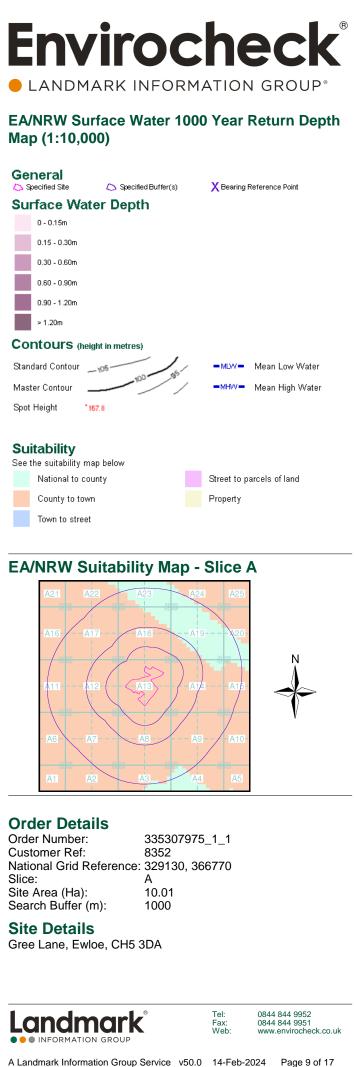
 Slice:
 A

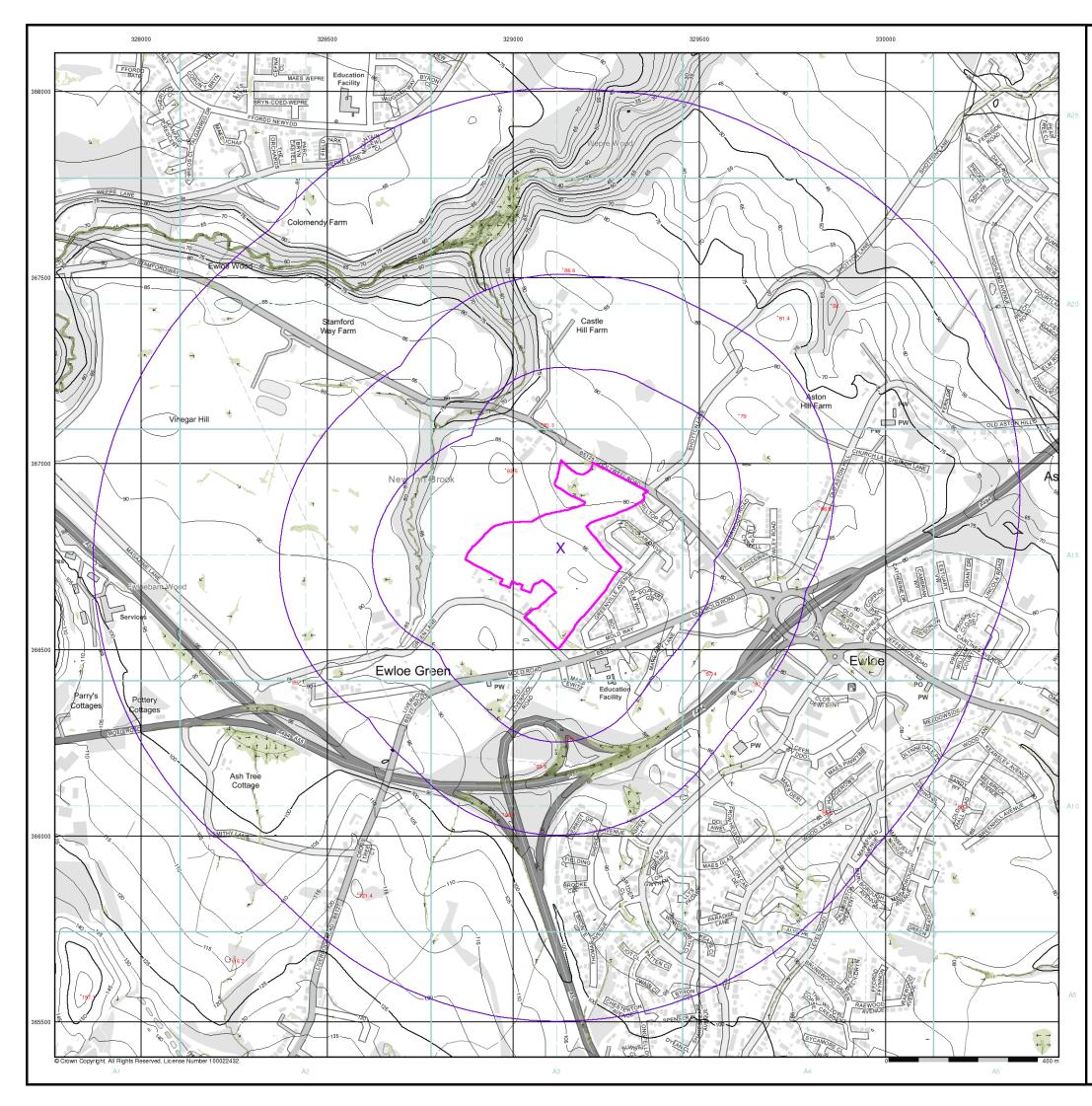
 Site Area (Ha):
 10.01

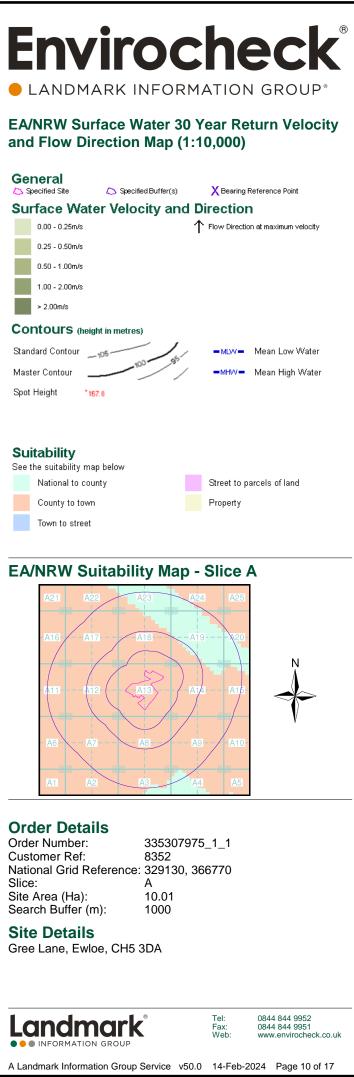
 Search Buffer (m):
 1000

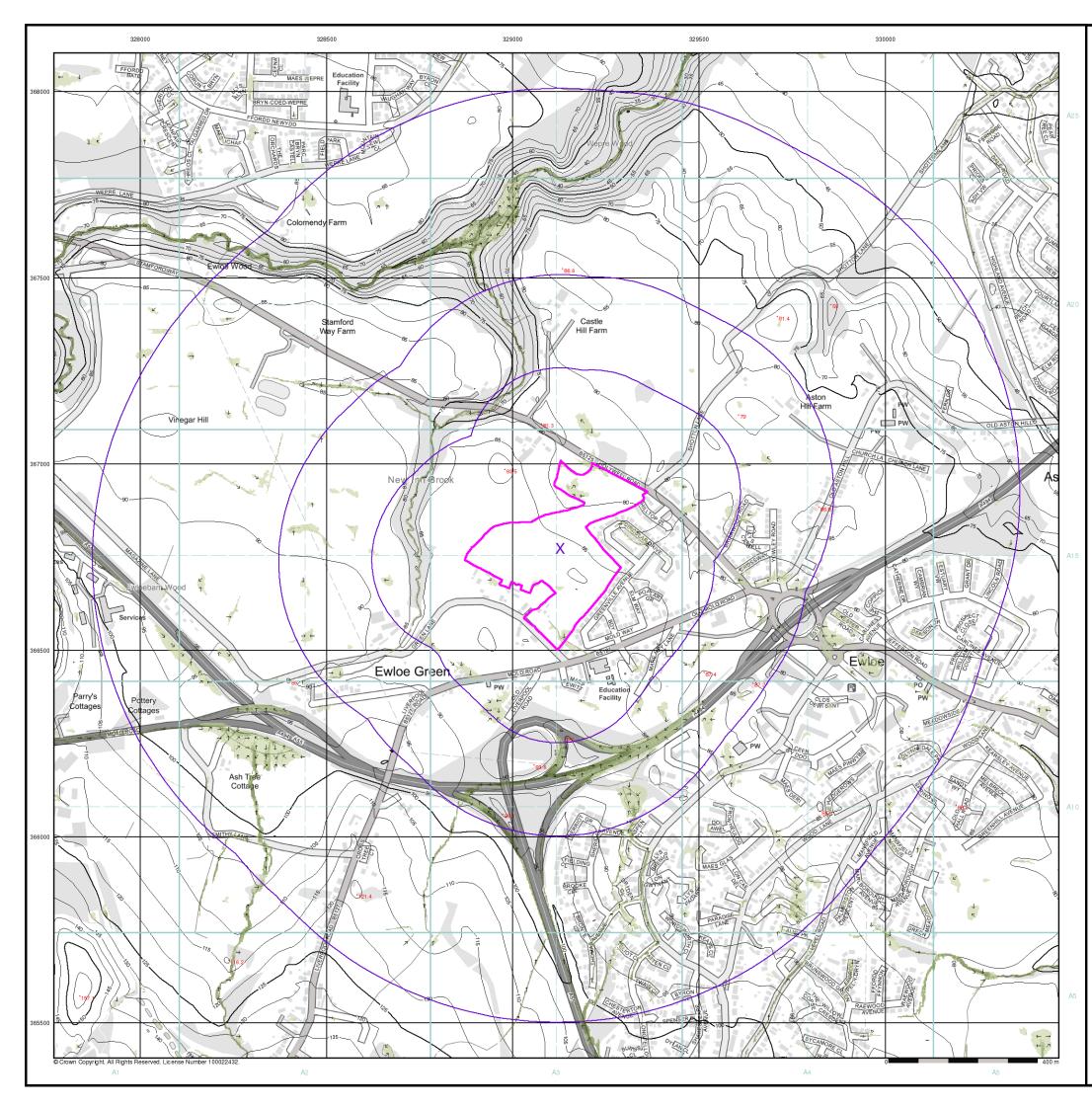
Site Details

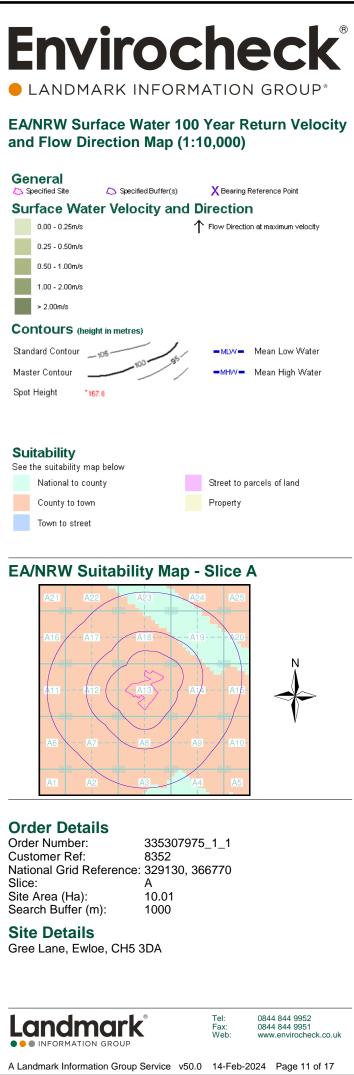

Gree Lane, Ewloe, CH5 3DA

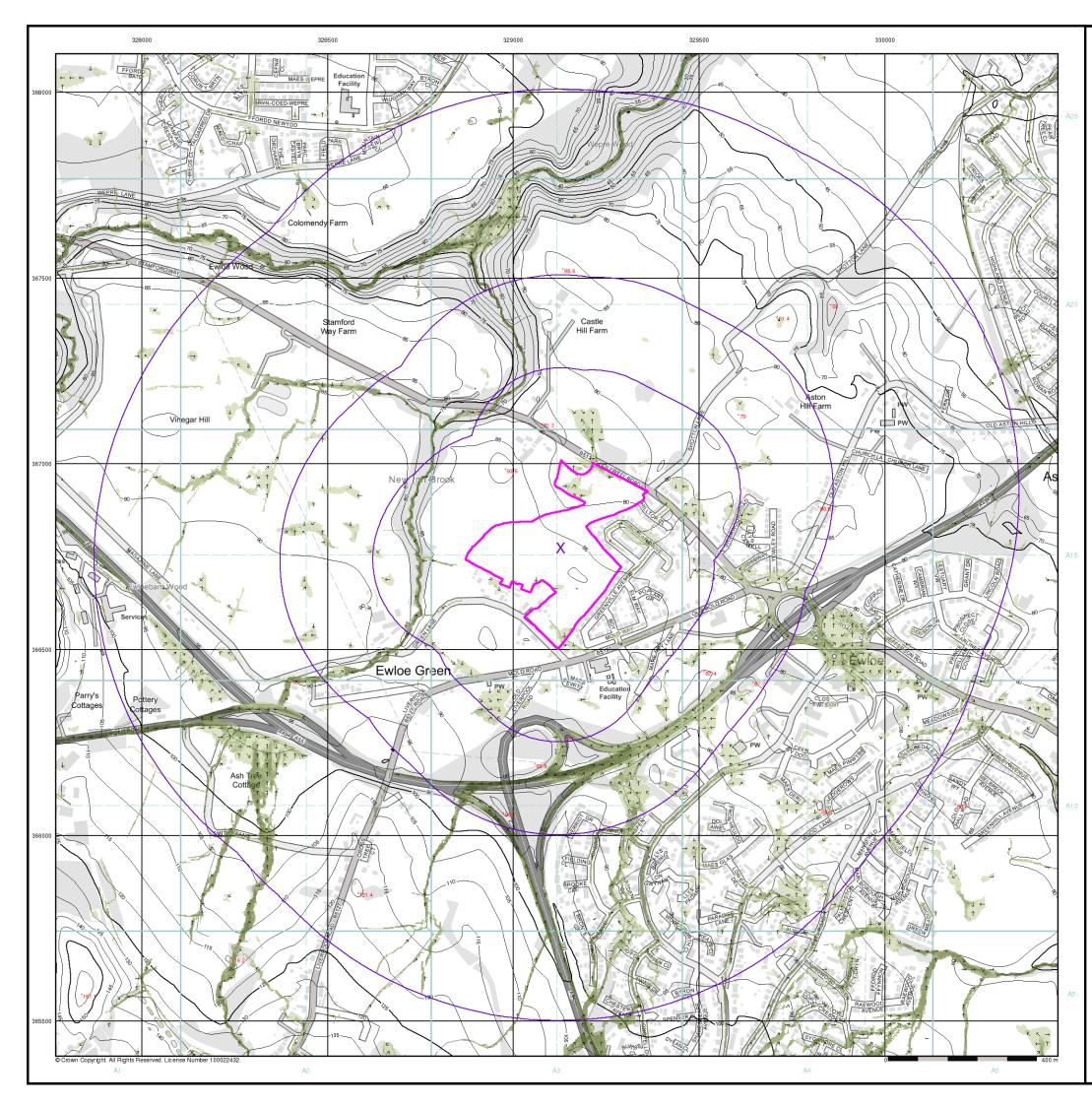


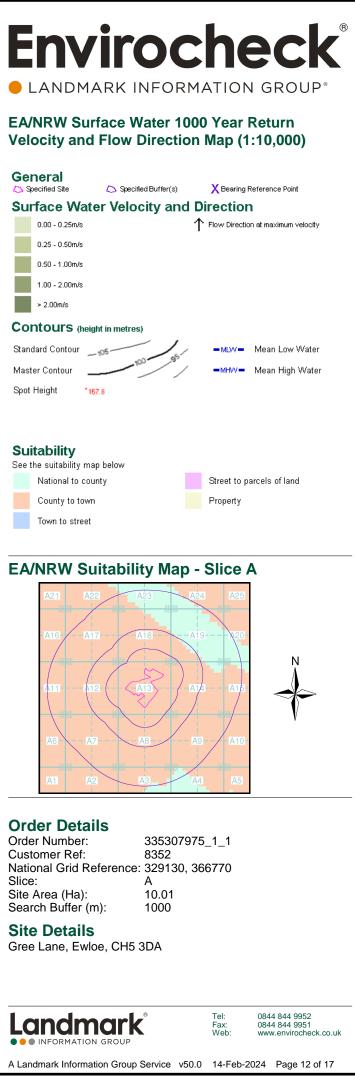


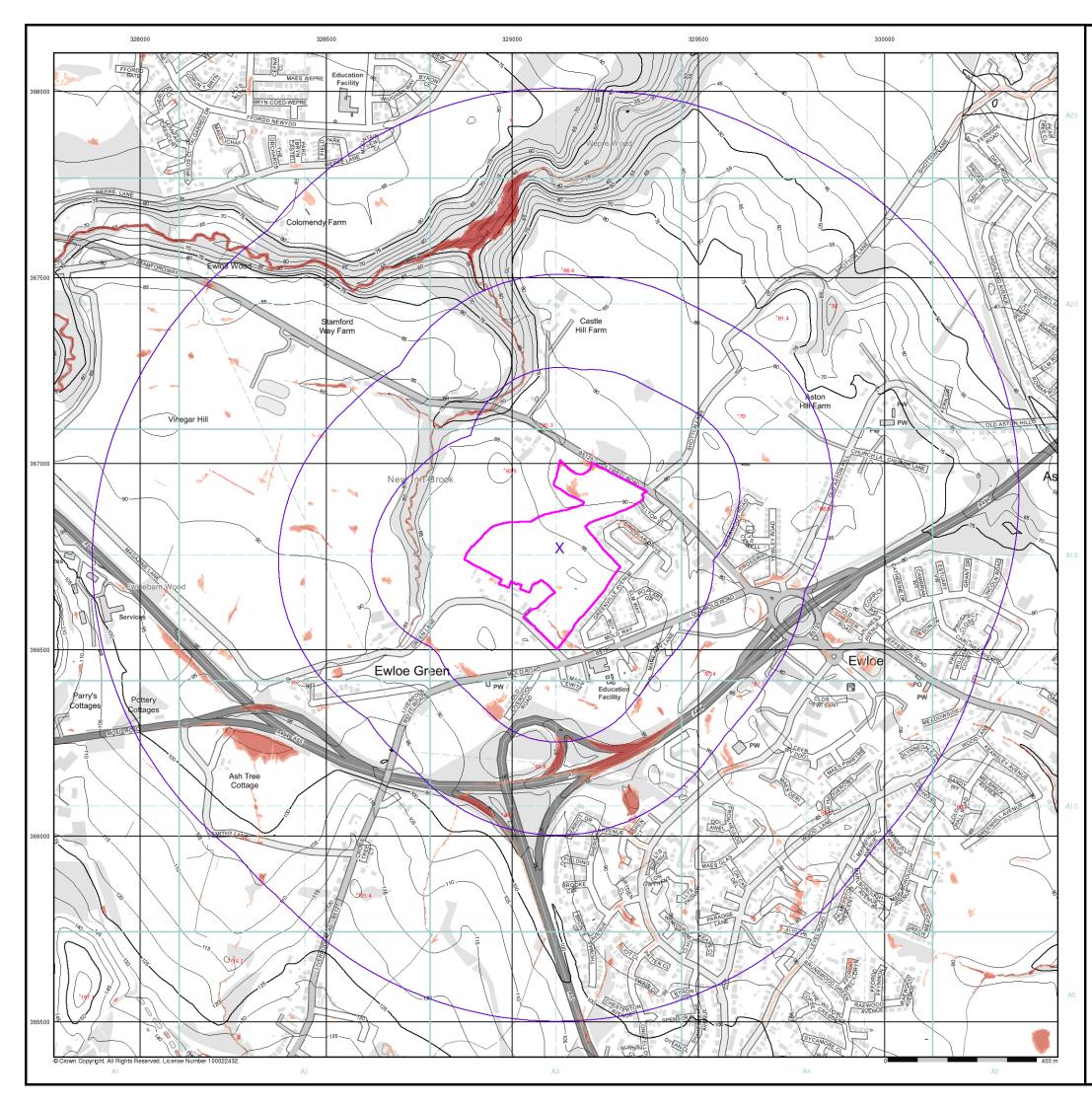

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

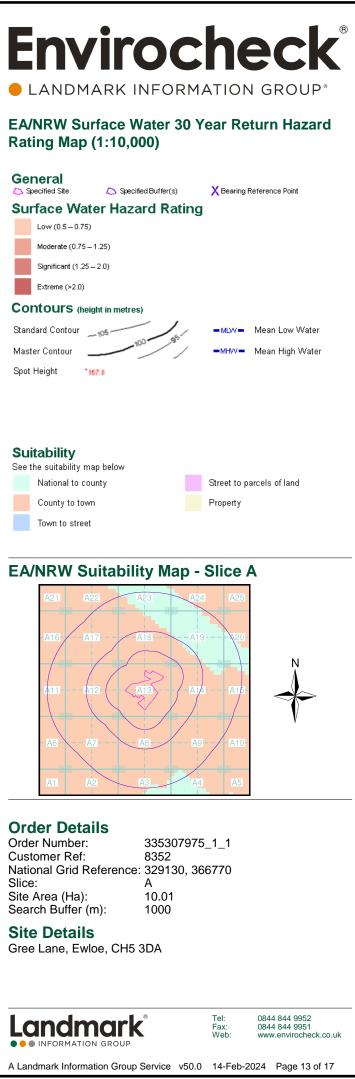

A Landmark Information Group Service v50.0 14-Feb-2024 Page 8 of 17

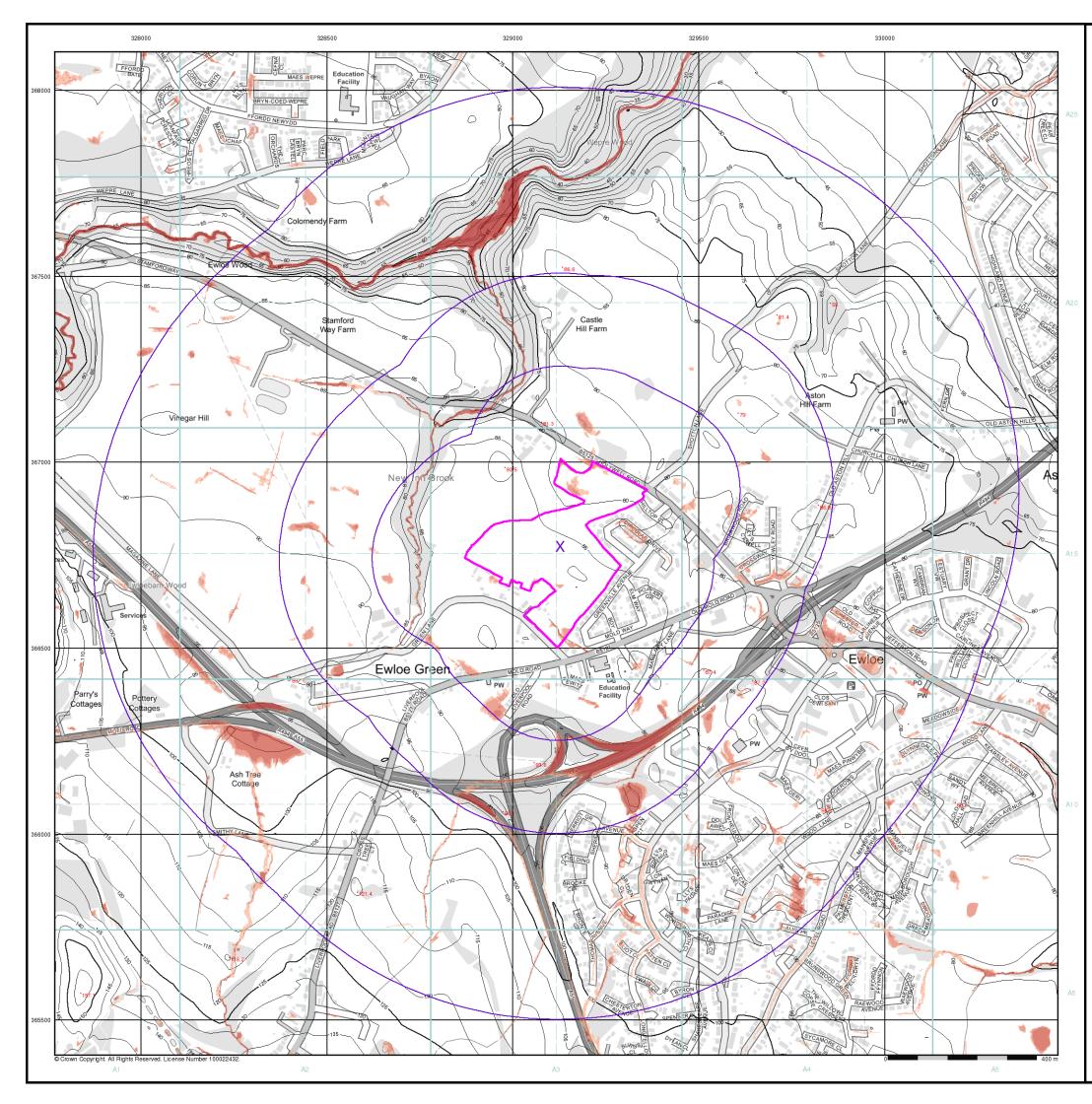


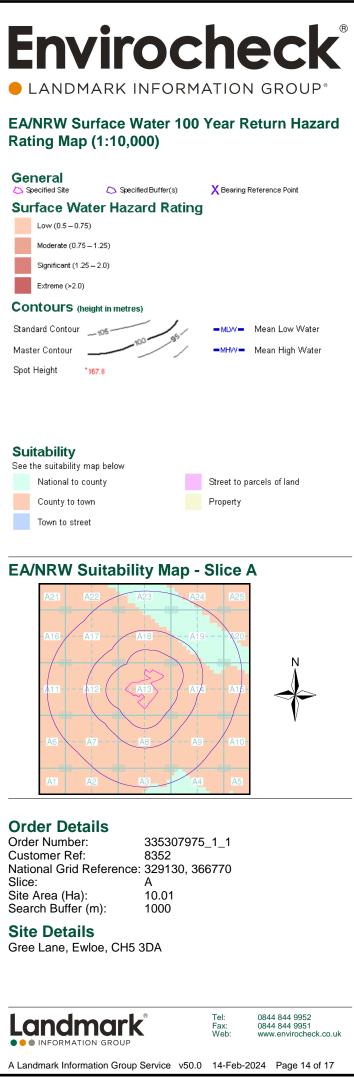


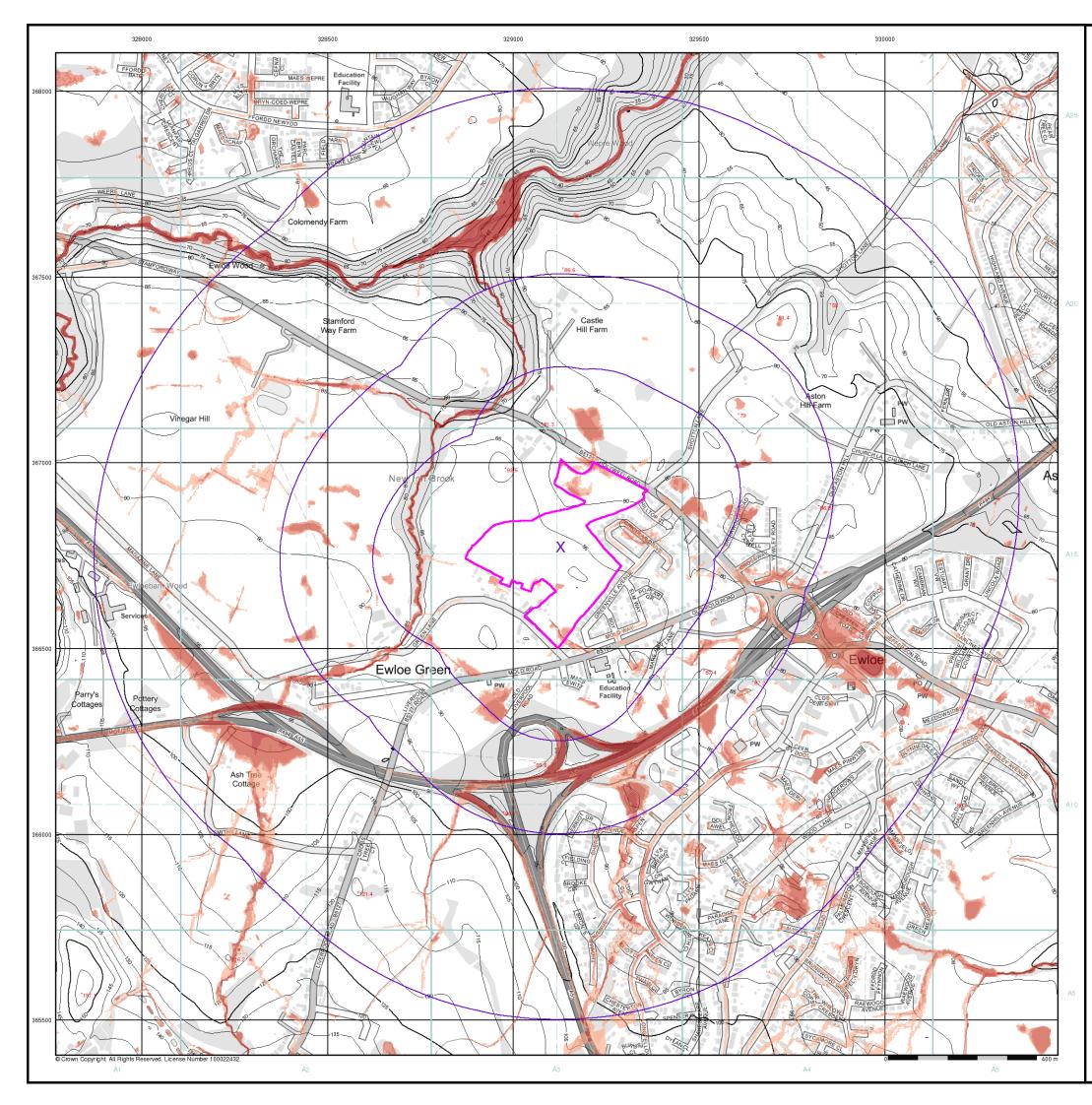


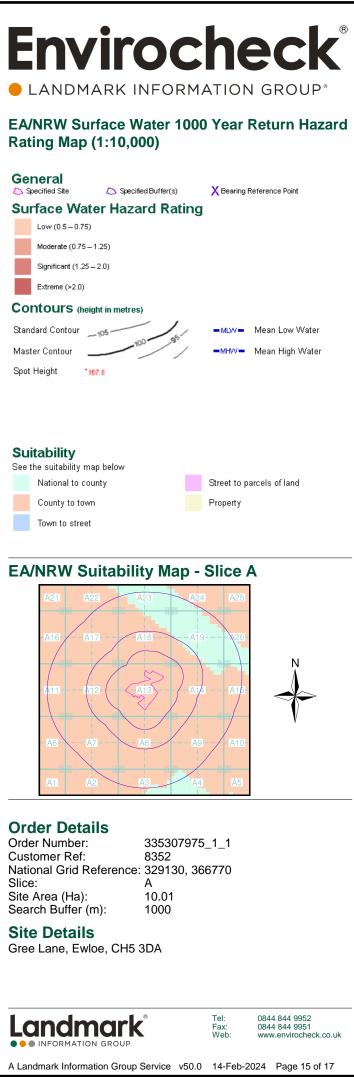


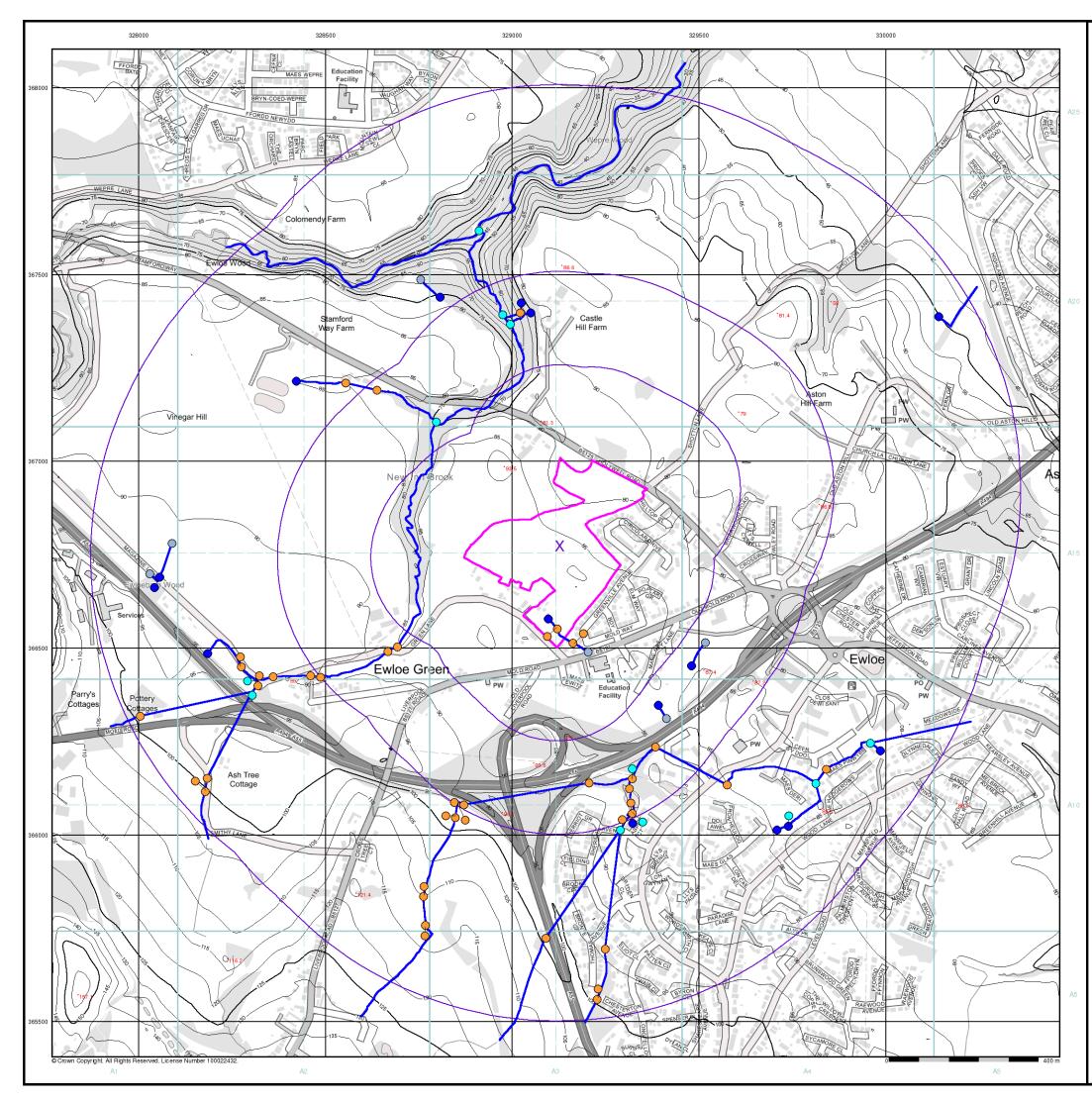


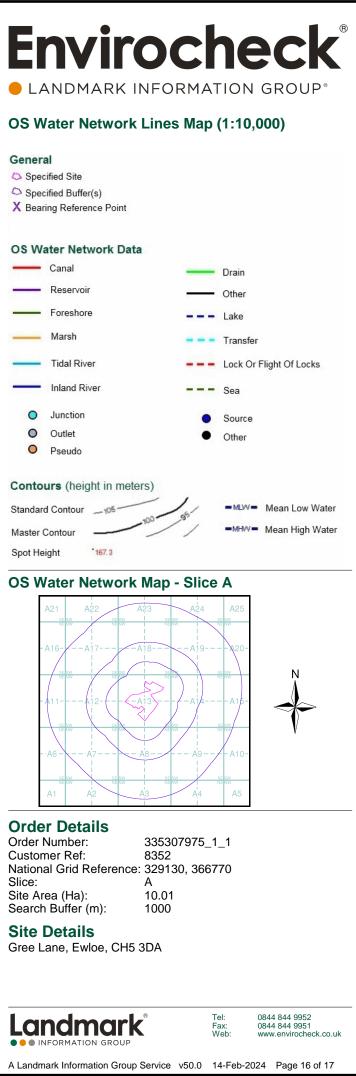


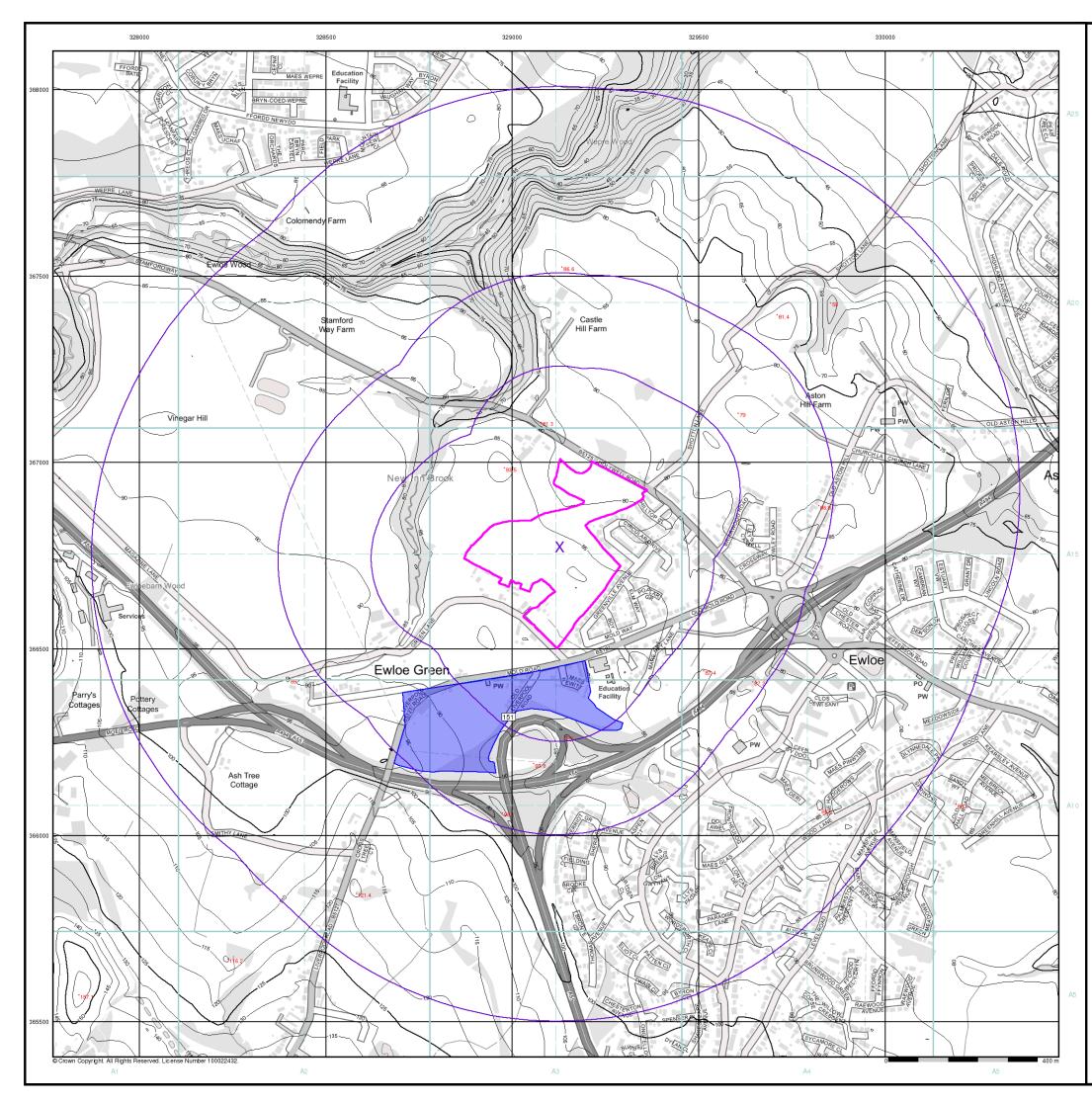


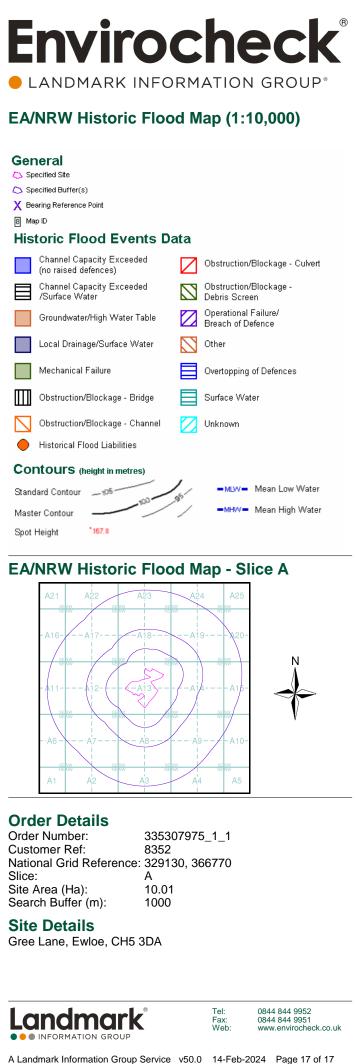


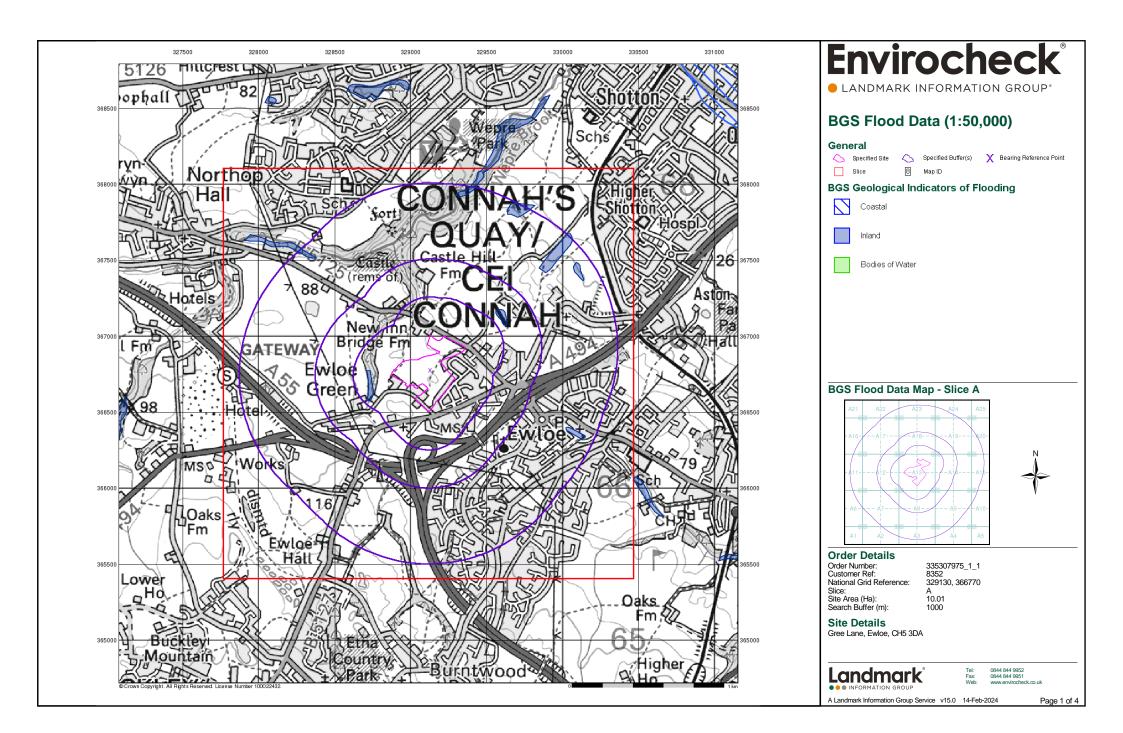


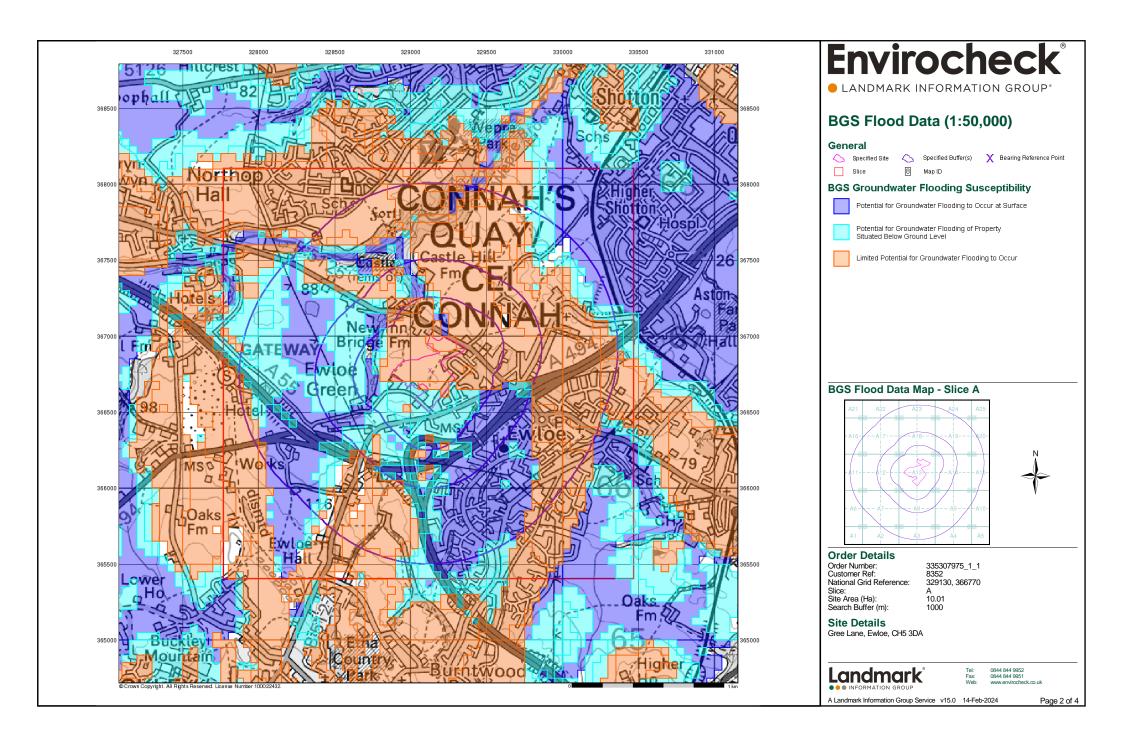


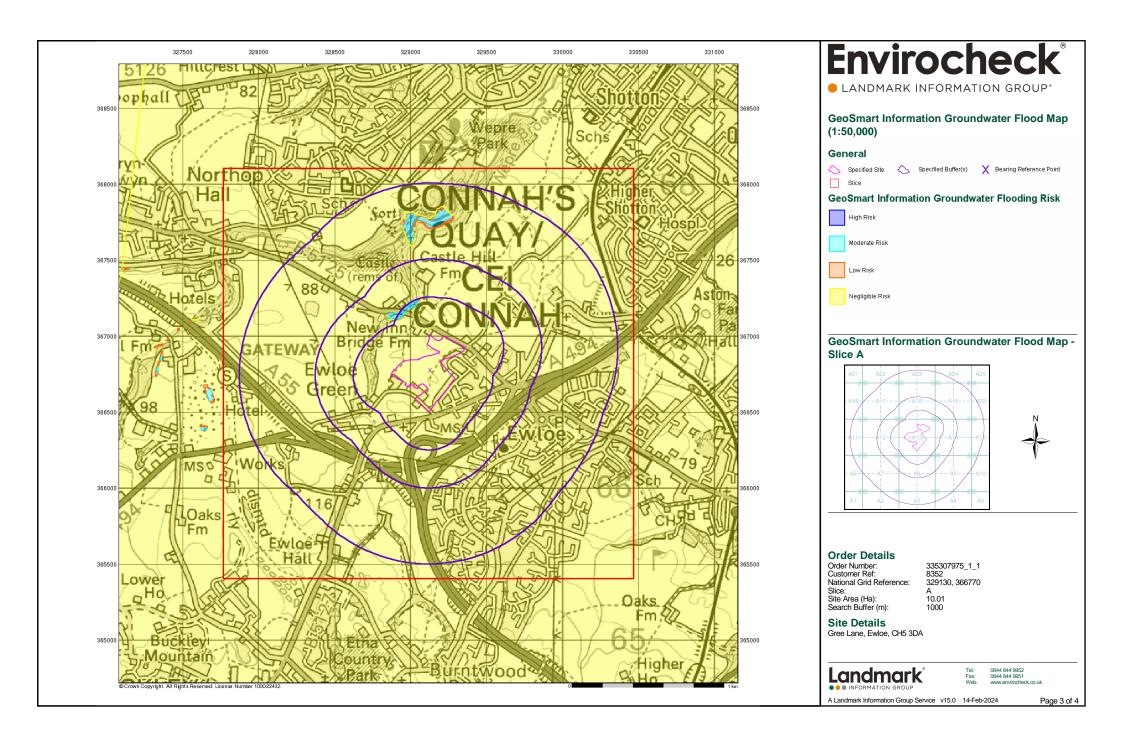


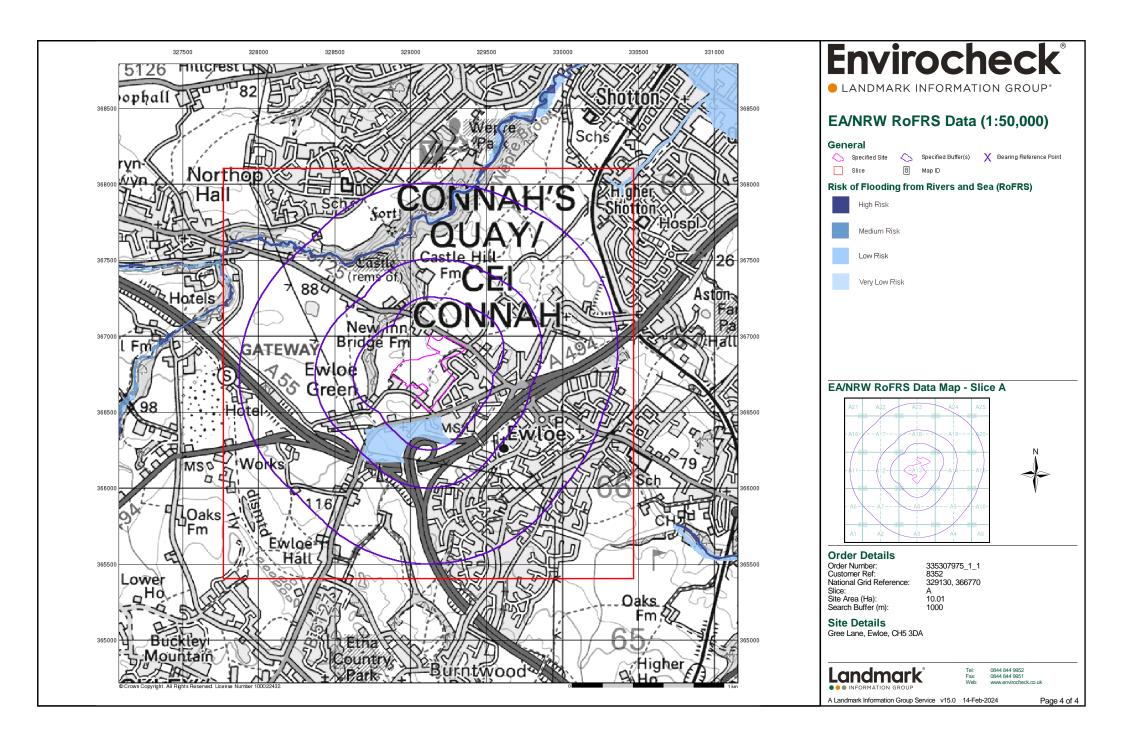












Flood Consequences Assessment for Land off Holywell Road, Ewloe, Flintshire

Appendix 3

Infiltration Consideration

Infiltration Testing Summary Report

Ref:8255ITS dated 17 January 2024

chartered consulting engineers

Infiltration Testing Summary

Site:	Land at Green Lane, Ewloe Green
Client:	Castle Green Homes
Coopers Ref.:	8255ITS
Date:	17 January 2024.
By:	Ben Hill, BSc (Hons), CSci, MIEnvSc, FGS - Senior Engineering Geologist

Data Enclosed:

The following information is enclosed and to be read in conjunction with the infiltration summary:

- Coopers Small Diameter Borehole Logs, WS1001 to WS1009, drilled on 8 and 9 January 2024.
- Coopers Drawing No. 8255/01 Site Plan.
- Coopers Infiltration Test Results WS1001 to WS1009, undertaken on 10 January 2024.

Test Methodology

The proposed BRE 365 infiltration testing was not deemed possible due to the boggy surface conditions limiting access across the site for necessary equipment. Testing was undertaken within monitoring wells installed by Coopers within small diameter boreholes. These differ from falling head tests (where casing holds water and is lifted at prescribed depths to allow water to be released). Casing was not able to be driven due to shallow water within the sand, and the boreholes could only be drilled with progressive reduction in diameter with depth. Each monitoring well was installed with a geosoc and gravel surround to prevent sediment infilling of the tube. Following installation the wells were left for 1 day for groundwater to stabilise. Coopers then returned to monitor the water level prior to adding water 40 litres of water or stopping when close to the surface. The water levels were subsequently monitored with a dip meter until the additional water drained or stabilised.

Calculation of Infiltration Rates

The infiltration rates were calculated based upon the time taken for water to drain between a 25% and 75% of the total water volume, through a calculated area of surrounding soil, following the same method used for BRE 365 infiltration tests.

The volume of water was calculated for each 1m depth, based upon volume of the 50mm diameter pipe (open), the diameter of the surrounding borehole (minus the volume of the pipe), and multiplied by 0.3 (to account for stone filled gravel). The surface area was calculated was based the surrounding soil and where the borehole was dry included the base sections. The concentric diameters of the boreholes were 0-1m = 102mm, 1-2m = 87mm, 2-3m = 77mm, 3-4m 67mm, 4-4.45m (SPT) = 62mm.

Example Water Volumes and Areas:

0-1m	Pipe vol.	1 x π x 0.025 ²	0.001963 m ³
	Surround vol.	$(1x (1 \times \pi \times 0.051^2) - (1 \times \pi \times 0.025^2)) \times 0.3$	0.001862 m ³
	Surface area (side)	1 x 2 x π x 0.051	0.320442 m ²
1-2m	Pipe vol.	1 x π x 0.025 ²	0.001963 m ³
	Surround vol.	$(1x (1 \times \pi \times 0.0435^2) - (1 \times \pi \times 0.025^2)) \times 0.3$	0.001194 m ³
	Surface area (side)	1 x 2 x π x 0.0435	0.2722319 m ²
2-3m	Pipe vol.	1 x π x 0.025 ²	0.001963 m ³
	Surround vol.	$(1x (1 \times \pi \times 0.0385^2) - (1 \times \pi \times 0.025^2)) \times 0.3$	0.000808 m ³
	Surface area (side)	1 x 2 x π x 0.0385	0.241903 m ²
3-4m	Pipe vol.	1 x π x 0.025 ²	0.001963 m ³
	Surround vol.	$(1x (1 \times \pi \times 0.0335^2) - (1 \times \pi \times 0.025^2)) \times 0.3$	0.000469 m ³
	Surface area (side)	1 x 2 x π x 0.0335	0.210487 m ²
4-4.45m	Pipe vol.	None	0 m ³
	Surround vol.	0.45 x π x 0.031 ²	0.001359 m ³
	Surface area (side)	0.45 x 2 x π x 0.031	0.08765 m ²
		TOTAL Water Volume	0.013544m ³
		TOTAL Surface Area	1.133531 m ²

<u>Table1: Borehole water volumes ($d\pi r^2$) if filled from surface with no water table ($d2\pi r$), all units in m, m^2 or m^3 .</u>

The volume at 25% loss of water (v_{25}) is calculated at 0.75 x 0.013544 = 0.010158 m³ The volume at 75% loss of water (v_{75}) is calculated at 0.25 x 0.013544 = 0.003386 m³

The depths of 25% loss of volume (d_{25}) and 75% loss of water (d_{75}) is calculated based upon straight line calculations (Pythagoras theorem), using the cumulative volume of water at given depths relative to v_{25} and v_{75} .

Depth		Cumulative Volume		
0m	do	0.001963 + 0.001862 + 0.009719	0.013544 m ³	V 0
1m	d1	0.001963 + 0.001194 + 0.006562	0.009719 m ³	V1
2m	d ₂	0.001963 + 0.000808 + 0.003791	0.006562 m ³	V2
3m	d₃	0.001963 + 0.000469 + 0.001359	0.003791 m ³	V ₃
4m	d ₄	0.001359 m ³	0.001359 m ³	V4

Table 2: Cumulative Water Volumes with Depth.

 v_{25} is between v_0 and v_1 , thus:

 $d_{25} = d_1 + ((v_{25} - v_1)/(v_0 - v_1)) \times (d_0 - d_1) = 1 + ((0.010158 - 0.009719))/(0.013544 - 0.009719) \times (0-1) = 0.885m$

 v_{75} is between v_3 and v_4 , thus:

 $d_{75} = d_4 + ((v_{75} - v_4)/(v_3 - v_4)) \times (d_3 - d_4) = 4 + ((0.003386 - 0.001359))/(0.003791 - 0.001359) \times (3-4) = 3.167m$

The soil infiltration rate in m/sec is calculated based upon the time taken for the volume of water (termed free volume) to drain between d_{25} and d_{75} , through the calculated surface area between d_{25} and d_{75} . Where infiltration rates do not achieve the 75% empty the lines are projected based upon an average of a straight line from the final 3 No. readings (using Pythagoras).

The free volume for the worked example is $v_{25} - v_{75} = 0.010158 - 0.003386 = 0.006772 m^3$

The calculated surface area for the worked example is as follows:

Tubic 5. culculuteu	Tuble 5. Calculated surface area of test deptils.								
Depth	Calculation	Total							
0.885-1m	0.115 x 0.320442	0.03685083 m ²							
1-2m	1 x 0.2722319	0.2722319 m ²							
2-3m	2-3m 1 x 0.241903								
3-3.167m	0.167 x 0.210487	0.035151329 m ²							
Surface area from	0.586137059 m ²								

Table 3: Calculated surface area of test depths.

The soil infiltration rate in m/sec is based upon:

• Free Volume (m3) / (surface area (m2) x time of outflow between d₂₅ and d₇₅ (sec))

For the worked example a 600 second time of outflow is used:

• 0.006772 / (0.586137059 x 600) = 0.000019256 (1.9256E-05) m/s

Test Results

The following discussions of the test results consider the results in the context of the strata encountered and the groundwater conditions. The results showed the site as a whole had highly variable rates, reflective of changes in the drift geology and areas of variable perched shallow groundwater. It is considered likely that the rates achieved would be better than achieved within BRE365 test pits, as these saturated the ground around the pits via repeat testing. Where the borehole testing is showing unsuitable rates for design, it is unlikely that full BRE 365 testing would improve, although the inverse is not true.

Should proposals for traditional soakaways for surface water drainage be considered BRE365 compliant testing would need to be targeted towards shallow permeable strata, and areas with sufficient clearance relative to ground water.

Infiltration Test Hole WS1001: drilled through a fine to coarse sand from below topsoil at 0.3m to >4m. The calculated infiltration rates of 1.33E-05 m/sec was applicable to the ground between 1.125m to 2.643m. The 4m installation was dipped prior to filling which identified sediment at 3.52m, indicative of up flow of sediment from the base (potentially running sand), but no water present at the base. The water drained significantly slower below 2.5m and effectively ceased to drain below 3.38m, commonly caused by perched waters below this depth.

Infiltration Test Hole WS1002: drilled through a glacial clay below topsoil at 0.6m on to a fine to coarse sand at 2.2m continuing to >4.0m The borehole log described the clay as damp at 1.1m and groundwater identified at the top of the sand at 2.2m. The 4m installation was dipped prior to water filling which identified groundwater at 2.60m. The infiltration test did not drain to the 75% effective depth within a period of 2 hours and 21 minutes, with a projected outflow used to calculate the inferred infiltration rate of 1.34E-06 m/sec of the ground between 0.947m to 2.041m.

Infiltration Test Hole WS1003: drilled through a glacial clay below topsoil at 0.5m on to a fine to coarse sand at 2.2m continuing to >4.0m The borehole log described the clay as damp at 1.6m and groundwater identified at the top of the sand at 2.2m. The 4m installation was dipped prior to water filling which identified groundwater at 0.94m. The soil infiltration rate of 1.61E-05 m/sec was applied to a narrow band above the water table between 0.685m and 0.855m.

Infiltration Test Hole WS1004: drilled through a fine to coarse sand below topsoil at 0.3m on to a sand and gravel at 2.0m, continuing to >4.0m. The borehole log described groundwater at 2.1m. The 4m installation was dipped prior to water filling which identified the well to be dry. 40 litres of water were poured into the monitoring well which drained faster than the inflow of water, indicative that the sands and gravels in dry conditions had high infiltration rates. A BRE 365 compliant infiltration test pit would be required to determine the infiltration rates.

Infiltration Test Hole WS1005: drilled through a fine to coarse sand below topsoil at 0.4m, continuing to >4.0m. Occasional bands of gravel were identified between 1.8m to 3.0m and pockets of clayey sand between 3.0m and 4.0m. The borehole log described groundwater at 2.1m. The 4m installation was dipped prior to water filling which identified groundwater at 1.75m. The soil infiltration rate of 1.32E-04 m/sec was applied to a narrow band above the water table between 0.707m and 1.378m, with significantly slower infiltration below 1.5m.

Infiltration Test Hole WS1006: drilled through a glacial clay below topsoil at 0.5m on to a fine to coarse sand at 1.8m, continuing to >4.0m. The borehole log described a groundwater seepage at 1.4m and groundwater at 3.2m. The 4m installation was dipped prior to water filling which identified the well to be dry. The infiltration test did not drain to the 75% effective depth within a period of 4 hours and 34 minutes, with a projected outflow used to calculate the inferred infiltration rate of 4.87E-07 m/sec of the ground between 1.32m to 3.38m.

Infiltration Test Hole WS1007: drilled through a glacial clay below topsoil at 0.4m on to a fine to coarse sand at 1.1m, continuing to >4.0m. The borehole log described the recovered soil samples as damp at 1.1m and identified groundwater at 2.4m during drilling. The borehole log referenced the side walls collapsed below 3m during drilling, limiting the installation to 3m. The installation was dipped prior to water filling which identified groundwater at 2.2m. The soil infiltration rate of 1.35E-04 m/sec was applied to a narrow band above the water table between 0.791m and 1.71m, although negligible drainage rates were evident below 2m, nearing the water table.

Infiltration Test Hole WS1008: drilled through a fine to coarse sand below topsoil at 0.3m on to a sand and gravel at 2.2m, continuing to >4m. The borehole log described groundwater at 2.5m during drilling. The installation was dipped prior to water filling which identified groundwater at 2.48m. 40 litres of water were added however the water levels did not rise above 1.23m at which point the monitoring commenced. The soil infiltration rate of 6.74E-05 m/sec was applied to a narrow band 1.528m and 2.141m , with negligible rates below 2.45m, close to the water table.

Infiltration Test Hole WS1009: drilled through a glacial clay below topsoil at 0.3m onto a fine to coarse sand at 1.4m, continuing to 4.0m. The borehole log described groundwater at 2.2m during drilling. Upon arrival to commence testing groundwater was at surface and unable to be tested.

Conclusions and Recommendations

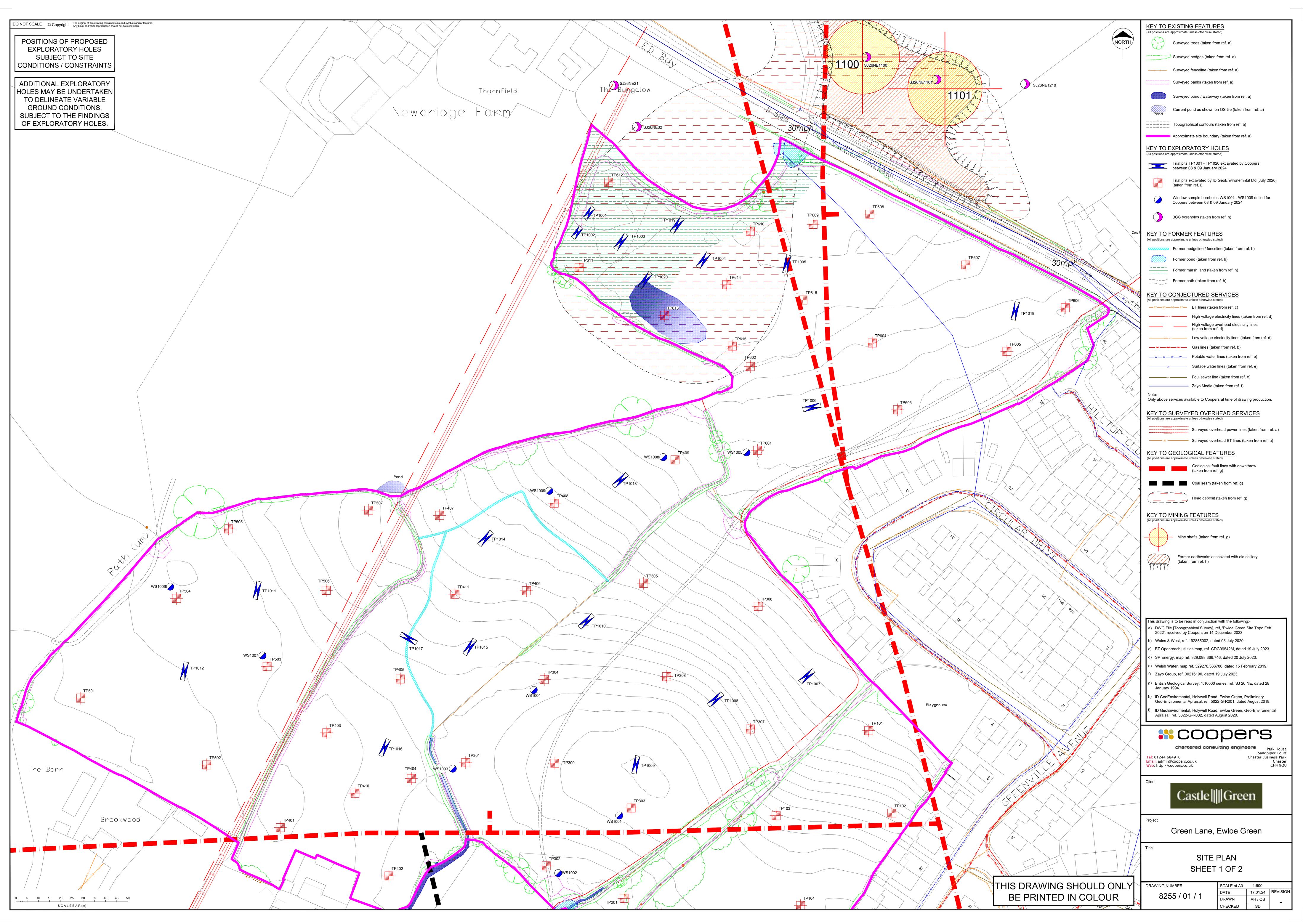
The infiltration testing undertaken is not compliant with BRE 365 and full testing would be required for infiltration designs and assessments.

The investigation has identified areas of shallow perched groundwater and slower anticipated infiltration rates, reflective of the drift geology, where traditional soakaways would not typically be considered feasible. Parts of the site indicate the potential higher drainage rates where infiltration testing may determine soakaways are viable, however we recommend considering the heterogeneity of the drift strata and the implications of the designs.

Prepared by

Bon Sit

B W Hill BSc(Hons), CSci, MIEnvSc, FGS


Checked and Approved by

Peter L. Syles

P R Sykes

BSc(Hons), MSc (Eng), CGeol, FGS

chai				tel: 0 veb: www.o l: admin@o	s (Chester) Ltd 1244 684 910 coopers.co.uk coopers.co.uk	GREEN LANE, EWLOE GREEN	Numb	
lethod : D	rchway Dart 239 rive-in Windowless ampler	87mm	ions to 1.00m 67mm to 4.00m to 2.00m to 3.00m	Ground	Level (mOD)	Client Castle Green Homes Ltd	Job Numb 825	
			n (Observed measurements)	Dates 08	8/01/2024	Engineer Coopers (Chester) Ltd	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
).00-0.30).30-1.00	В				(0.30) 0.30	Grass over dark brown, slightly silty, slightly gravelly, sandy TOPSOIL with occasional rootlets. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone. Medium dense, light brown, slightly silty, slightly gravelly, fine to coarse SAND. Gravel is sub-angular to sub-rounded, fine to medium of natural stone.		K///X4
.00-1.45 .00-2.00	SPT N=12 B		1,2/3,3,3,3					
2.00-2.45 2.00-3.00	SPT N=12 B		1,3/3,3,3,3		(3.70)			
9.00-3.45 9.00-4.00	SPT N=15 B		1,2/3,4,4,4					
4.00-4.45	SPT N=22		4,4/5,5,6,6		4.00	Complete at 4.00m		1. 15 av
Remarks ocation CA	F scanned prior to dr	illing. No	groundwater during drilling.			Scale (approx)	Logge By	ed
lo casing us	sed during drilling		ilion tests. e surrounded by gravel for infill Ltd. SPT Energy Ratio = 62%.	tration test Rig Ref:	is. Archway Dart	Checke	SD d PRS	

	COOP			veb: www.o	1244 684 910 coopers.co.uk coopers.co.uk	GREEN LANE, EWLOE GREEN	Numb	
lethod : Di	rchway Dart 239 rive-in Windowless ampler	87mm	ions n to 1.00m 67mm to 4.00m to 2.00m to 3.00m	Ground	Level (mOD)	Client Castle Green Homes Ltd	Job Numb 825	
			n (Observed measurements)	Dates 08	3/01/2024	Engineer Coopers (Chester) Ltd	Sheet	
Depth (m)	oth I) Sample / Tests		Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	d
00-0.60	В				(0.60)	Grass over dark brown, slightly silty, slightly gravelly, sandy TOPSOIL with occasional rootlets. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone.		KIIIXUIIXU.
90 90 00-1.45 00-2.00	SV 76kPa SV 88kPa SPT N=11 B		2,2/3,3,3,2 Damp(1) at 1.10m.			Firm, high strength, orangish brown mottled grey, slightly silty, slightly gravelly, sandy CLAY. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone and occasional coal fragments. From 1.10m: Clay damp, becoming firm and medium	× · · · · · · · · · · · · · · · · · · ·	
20 50	SV 72kPa SV 54kPa				(1.60)	strength	× · · · · · · · · · · · · · · · · · · ·	
80 00-2.45	SV 58kPa SPT N=10		1,1/2,3,2,3		2.20		× · · · · · · · · · · · · · · · · · · ·	•
20-3.00	В		Groundwater(2) at 2.20m.		2.20	Medium dense, light brown, slightly silty, slightly gravelly, fine to coarse SAND. Gravel is sub-angular to sub-rounded, fine to coarse of natural stone.		
00-3.45 00-4.00	SPT N=19 B		1,3/4,4,5,6		(1.80)	From 3.00m - 4.00m: Occasional pockets of clay		
00-4.45	SPT N=12		4,4/2,3,4,3		4.00	Complete at 4.00m		<u> </u>
emarks	scanned prior to dr	illing. Dan	np at 1.10m. Groundwater at 2.	.20m.	F	Scale (approx)	Logge By	e
o casina us	ed durina drillina.		ation tests. e surrounded by gravel for infill	tration test	's	1:40	SD	,

	COOP			tel: 0 veb: www.	s (Chester) Ltd 1244 684 910 coopers.co.uk coopers.co.uk	Site GREEN LANE, EWLOE GREEN	Numb WS10	
Method : Di	rchway Dart 239 rive-in Windowless ampler	87mm	ions to 1.00m 67mm to 4.00m to 2.00m to 3.00m	Ground	Level (mOD)	Client Castle Green Homes Ltd	Job Numb 825	
			n (Observed measurements)	Dates 08	8/01/2024	Engineer Coopers (Chester) Ltd	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description SS)	Legend	Wator
0.00-0.50	В				(0.50)	Grass over dark brown, slightly silty, slightly gravelly, sandy TOPSOIL with occasional rootlets. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone.		<i>V///X///</i>
0.50-1.00 0.60 0.80	B SV 70kPa SV 86kPa					Firm, medium to high strength, orangish brown mottled grey, slightly silty, slightly gravelly, sandy CLAY. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone with occasional coal fragments.	× · · · · · · · · · · · · · · · · · · ·	
1.00-1.45 1.00-2.00	SPT N=11 B		2,2/3,2,3,3		(1.70)		× · · · · · · · · · · · · · · · · · · ·	
1.60 1.80 2.00-2.45	SV 68kPa SV 68kPa SPT N=5		Damp(1) at 1.60m.				× · · · · · · · · · · · · · · · · · · ·	
2.20-3.00	В		Groundwater(2) at 2.20m.		2.20	Medium dense, light brown, slightly silty, slightly gravelly, slightly clayey, fine to coarse SAND. Gravel is sub-angular to sub-rounded, fine to medium of natural stone.		
3.00-3.45 3.00-4.00	SPT N=17 B		3,4/5,4,4,4		(1.80)			••••••••••••••••••••••••••••••••••••••
4.00-4.45	SPT N=30		5,5/6,6,9,9		4.00	Complete at 4.00m		<u>े भ</u> र्दे
VS location	completed to underta	ake infiltra	np at 1.60m. Groundwater at 2. ation tests. ery from 3.00m - 4.00m: 30% ru			Scale (approx)	Logge By	ed
ocation inst	alled with 4.00m of s	slotted pip	e surrounded by gravel for infilt Ltd. SPT Energy Ratio = 62%.	tration test	ts. Archway Dart 2	Checke	sD ed PRS	

	COOP			tel: 0 veb: www.	s (Chester) Ltd 01244 684 910 coopers.co.uk coopers.co.uk	Site GREEN LANE, EWLOE GREEN	Numb WS10	
Method : Dr	rchway Dart 239 rive-in Windowless ampler	87mm	ions h to 1.00m 67mm to 4.00m to 2.00m to 3.00m	Ground	Level (mOD)	Client Castle Green Homes Ltd	Job Numb 825	
		Location (Observed measurements)		Dates 08/01/2024		Engineer Coopers (Chester) Ltd		: 1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
0.00-0.30	В				(0.30) 0.30	Grass over dark brown, slightly silty, slightly gravelly, sandy TOPSOIL. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone.		X///X
).30-1.00	В					Medium dense, orangish brown, slightly silty, slightly gravelly, slightly clayey, fine to coarse SAND. Gravel is sub-angular to sub-rounded, fine to medium of natural stone and coal fragments.	, , , , , , , , , , , , , , , , , , ,	
1.00-1.45 1.00-2.00	SPT N=13 B		4,3/4,3,2,4		(1.70)	From 1.00 - 2.00m: Occasional small pockets of sandy Clay. Medium dense		°
2.00-2.45 2.00-3.00	SPT N=12 B		1,1/3,4,3,2 Groundwater(1) at 2.10m.		2.00	Loose, brown, slightly silty, fine to coarse SAND and angular to sub-angular, fine to coarse GRAVEL.		
3.00-3.45 3.00-4.00	SPT N=8 B		3,2/1,2,2,3		(2.00)	From 3.00m: Loose		· · · · · · · · · · · · · · · · · · ·
4.00-4.45	SPT N=21		4,3/4,5,6,6			From 4.00m: Becoming medium dense Complete at 4.00m		
Remarks	scanned prior to dr	illing. Gro	undwater at 2.10m.		<u> </u>	Scale (approx)	Logge By	
Collapse follo No casing us	owing drilling from 3. ed during drilling. Po	00m - 4.0 oor recove	0m. ery from 3.00m - 4.00m: 25% re	ecovery. Fi	rom 2.00m - 3.	.00m: 80% recovery. 1:40	SD	
_ocation insta 3 orehole drill	alled with 3.00m of s led by GP Drilling Co	otted pip	e surrounded by gravel for infil Ltd. SPT Energy Ratio = 62%.	tration tes Rig Ref: /	ts. Archway Dart 2	239. Checke By	d	

	COOP			tel: 0 veb: www.	s (Chester) Ltd 1244 684 910 coopers.co.uk coopers.co.uk	Site GREEN LANE, EWLOE GREEN	Numb	
Method : Dr	chway Dart 239 ive-in Windowless ampler	87mm	ions to 1.00m 67mm to 4.00m to 2.00m to 3.00m	Ground	Level (mOD)	Client Castle Green Homes Ltd	Job Numb 8255	
		Location (Observed measurements)		Dates 08/01/2024		Engineer Coopers (Chester) Ltd	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	1
0.00-0.40 0.40-1.00	В				(0.40) 0.40 0.40	Grass over dark brown, slightly silty, slightly gravelly, sandy TOPSOIL with occasional rootlets. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone. Medium dense, light brown, slightly silty, gravelly, fine to coarse SAND. Gravel is sub-angular to sub-rounded, fine to medium of natural stone.		
1.00-1.45 1.00-2.00	SPT N=14 B		3,4/5,3,3,3			From 1.50m: Occasional fragments of coal From 1.80m - 3.00m: Occasional bands of gravel		·
2.00-2.45 2.00-3.00	SPT N=6 B		2,1/2,1,1,2 Groundwater(1) at 2.10m.		(3.60)	From 2.00m - 4.00m: Loose		Z
3.00-3.45 3.00-4.00	SPT N=7 B		1,2/2,1,2,2			From 3.00m - 4.00m: Occasional small pockets of clayey sand		
4.00-4.45	SPT N=21		4,3/4,5,6,6			Complete at 4.00m		
Remarks	scanned prior to dri	illing. Gro	undwater at 2.10m.		<u>-</u>	Scale (approx)	Logge By) d
No casing us Location insta	completed to underta ed during drilling. C alled with 3.00m of s ed by GP Drilling Co	ollapse fo	llowing drilling from 3.00m - 4.0 e surrounded by gravel for infilt	00m. tration test	ts. Archway Dart (1:40	SD	
SOLEUIOIE QLIII	ea by GP Drilling Co	nuaciors	Ltd. SPT Energy Ratio = 62%.	Rig Ret: A	Archway Dart 2	Checke	d PRS	

SP1.00 70 SV 68Pa SV 68Pa 70 2.3/2.3.3 SV 68Pa 80 - 160 SV 68Pa 70 2.3/2.3.3 SV 68Pa 80 - 160 SV 68Pa 70 2.3/2.3.3 SV 68Pa 70 (1.30) 70 From 1.30m - 1.50m: Softer Family sub-angular to sub-nounded, line to medium of natural store.	char		enginee	rs email	tel: 0 veb: www. : admin@	(Chester) Ltd 1244 684 910 coopers.co.uk coopers.co.uk	GREEN LANE, EWLOE GREEN	Numbe WS10
Deck Disk Disk <thdisk< th=""> Disk Disk <thd< th=""><th>/lethod : Dr</th><th>ive-in Windowless</th><th>102mm 87mm</th><th>n to 1.00m 67mm to 4.00m to 2.00m</th><th>Ground</th><th>Level (mOD)</th><th></th><th>Numbe</th></thd<></thdisk<>	/lethod : Dr	ive-in Windowless	102mm 87mm	n to 1.00m 67mm to 4.00m to 2.00m	Ground	Level (mOD)		Numbe
Image: start of transmission in the start of the start of transmission in the stare stare start of transmission in the start of transmissi						0/01/2024		
Solution Solut	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
00-4.45 SPT N=17 0.2/4,4,4,5 4.00 Complete at 4.00m Image: Complete at 4.00m Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Remarks: Image: Complete at 4.00m Remarks: Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Remarks: Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Remarks: Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Remarks: Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Remarks: Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m Image: Complete at 4.00m <	.00-0.50 .50-1.00 .60 .70 .90 .00-1.45 .00-1.80 .20 .50 .70 .70	B SV 66kPa SV 68kPa SV 72kPa SPT N=11 B SV 68kPa SV 48kPa SV 48kPa		Seepage(1) at 1.40m.		0.50	fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone. Medium strength, firm, orangish brown, slightly silty, slightly gravelly, sandy CLAY. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone. From 1.30m: Pockets of sand From 1.30m - 1.50m: Softer band due to water seepage Medium dense, orangish brown, slightly silty, slightly gravelly, clavey, fine to coarse SAND. Gravel is sub-angular to	X • • • • • • • • • • • • • • • • • • •
complete at 4.00m Complete at 4.00m comple	00-2.70 70-3.00 00-3.45	B B SPT N=16		3,3/3,4,4,5		(0.90)	Medium dense, light brown, slightly silty, slightly gravelly, fine to coarse SAND. Gravel is angular to sub-rounded, fine	
bocation CAT scanned prior to drilling. Seepage at 1.40m. Groundwater at 3.20m. (approx) (S location completed to undertake infiltration tests. o casing used during drilling. coation installed with 4.00m of slotted pipe surrounded by gravel for infiltration tests. 1:40 SD	.00-4.45	SPT N=17		0,2/4,4,4,5			Complete at 4.00m	
pocation installed with 4.00m of slotted pipe surrounded by gravel for infiltration tests. 1:40 SD	VS location	completed to underta	illing. See ake infiltra	page at 1.40m. Groundwater a tion tests.	t 3.20m.	<u> </u>		Logged By
	lo casing us ocation insta	ed during drilling. alled with 4.00m of s	slotted pip	e surrounded by gravel for infilt	ration test Rig Ref: /	s. Archwav Dart 2		SD

cha		enginee	rs emai	veb: www. l: admin@o	1244 684 910 coopers.co.uk coopers.co.uk	GREEN LANE, EWLOE GREEN	Number WS100
Method : D	Archway Dart 239 Drive-in Windowless Gampler	87mm	ions n to 1.00m 67mm to 4.00m to 2.00m to 3.00m	,		Client Castle Green Homes Ltd	Job Number 8255
			n (Observed measurements)	Dates	9/01/2024	Engineer	Sheet
Denth		Water		Level	Denth	Coopers (Chester) Ltd	1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.00-0.40	В				(0.40)	Grass over dark brown, slightly silty, slightly gravelly, sandy TOPSOIL with occasional rootlets. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone.	
.40-1.00 .60	B SV 52kPa				E E F	Medium strength, orangish brown, slightly silty, gravelly, sandy CLAY. Sand is fine to coarse. Gravel is sub-angular to	
.80	SV 55kPa				E (0.70)	From 0.60m: Shear vanes breaking up due to sand and	× • • • ×
.00-1.45 .10-2.00	SPT N=3 B		1,1/1,1,0,1 Damp(1) at 1.10m.		1.10	gravel content Loose, orangish brown, slightly silty, slightly clayey, gravelly, fine to coarse SAND. Gravel is sub-angular to sub-rounded,	
						fine to coarse SAND. Gravel is sub-angular to sub-rounded, fine to coarse of natural stone.	8 - * * * * * *
					-		× · · · ×
							×
.00-2.45 .00-3.00	SPT N=8 B		2,2/1,2,2,3				**************************************
			Groundwater(2) at 2.40m.				Σ
					(2.90)		ו• ו
.00-3.45	SPT N=12		1,1/3,2,3,4			From 3.00m: Becoming medium dense	·× ·×···
.00-4.00	B		1,1/3,2,3,4		-	From 5.00m. Decoming medium dense	ו •× •×
							8 - * × * × • • • • • • • • • • • • • • • • • • •
							•× •×
.00-4.45	SPT N=39		7,7/9,9,10,11		4.00	From 4.00m: Becoming dense	ו••••••
					E	Complete at 4.00m	
					- <u> </u>		
					- - -		
					-		
Remarks	T scanned prior to dr	illing. Dan	np at 1.10m. Groundwater at 2	.40m.		Scale (approx)	Logged By
S location lo casing us	completed to undert sed during drilling. Sa lapsed from 3.00m -	ake infiltra ands dam	ition tests.			1:40	SD
rom 1.00m	- 2.00m: 80% recover talled with 3 00m of s	ery. From	2.00m - 3.00m: 90% recovery. e surrounded by gravel for infil	tration test	ts	0% recovery.	
sorehole dri	lled by GP Drilling Co	ontractors	Ltd. SPT Energy Ratio = 62%.	Rig Ref: A	Archway Dart	239. By	PRS

charte				veb: www.	1244 684 910 coopers.co.uk coopers.co.uk	GREEN LANE, EWLOE GREEN	Numb	
lethod : Drive	nway Dart 239 e-in Windowless npler	87mm	ions n to 1.00m 67mm to 4.00m to 2.00m to 3.00m	Ground	Level (mOD)	Client Castle Green Homes Ltd	Job Numb 825	
			n (Observed measurements)	Dates	9/01/2024	Engineer Coopers (Chester) Ltd	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	t l
	B				(0.30)	Grass over dark brown, slightly silty, slightly gravelly, sandy TOPSOIL. Sand is fine to coarse. Gravel is sub-angular to sub-rounded, fine to medium of natural stone.		W///XA*.
					(1.00)	Medium dense, orangish brown, slightly silty, gravelly, clayey, fine to coarse SAND. Gravel is sub-angular to sub-rounded, fine to medium of natural stone.	* * * * * *	· · · · · · · · ·
00-1.30	SPT N=13 B		2,3/3,3,3,4		 		ו••••	· · · · · · · · ·
.30-2.00	В				(1.00)	Medium dense, orangish brown, slightly silty, slightly gravelly, fine to coarse SAND. Gravel is sub-angular to sub-rounded, fine to medium of natural stone and occasional coal fragments.	× * * * * * * * * * * * * * * * * * * *	
	SPT N=11 B		2,3/3,3,3,2		2.20	Medium dense, orangish brown, slightly silty, fine to coarse SAND and sub-angular to sub-rounded, fine to coarse GRAVEL of natural stone.		
			Groundwater(1) at 2.50m.			GRAVEL OF NATURAL STONE.		
	SPT N=17 B		3,4/6,4,4,3		(1.80)			
.00-4.45	SPT N=13		3,2/3,2,2,6		4.00	Complete at 4.00m		5. 5 F F F F F F F F F F F F F F F F F F
S location co	mpleted to underta	lling. Gro ake infiltra	undwater at 2.50m. ation tests.		<u> </u>	Scale (approx)	Logge By	⊥ ed
o casing used	d during drilling.		3.00m - 4.00m: 50% recovery.			1:40	SD	

Pethod : Drive-in Windowless Sampler 102mm to 1.00m 67mm to 4.00m 87mm to 2.00m 77mm to 3.00m Number Castle Green Homes Ltd Number 8255 Location (Observed measurements) Dates 09/01/2024 Engineer Coopers (Chester) Ltd Sheet 1/1 Depth (m) Sample / Tests Water Depth 0 (m) Field Records Level (mOD) Depth (Thickness) Description Legend	Method : Drive-in Windowless 102mm to 1.00m 67mm to 4.00m 87mm to 2.00m			,		Number WS100 Job Number 8255				
Location (Observed measurement) Data Depth Sample / Tests Very matchesize Energinate Doperty Energinate Doperty Description Legend 00.030 B B Paid Records MR80 (0.030) Description Legend Comparison of the town shipping situation of the town shipping situatis the town shipping situation of the town shipping situatis the to										
00-0.3 B SP (96kPa 90 SV (96kPa 90					Dates 09/01/2024					
00-100 00 B V 064Pa 03 00-20 03 B V 064Pa 03 00-20 03 00-20 03 <th>Depth (m)</th> <th>Sample / Tests</th> <th>Water Depth (m)</th> <th>Field Records</th> <th>Level (mOD)</th> <th>Depth (m) (Thickness)</th> <th>Description</th> <th>Legend</th> <th>d</th>	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	d	
amathas amathas gravely, fine to coarise SAND, Grave is sub-angular to gravely, fine to coarise SAND, Grave is sub-angular to 00-2.45 SPT N=11 2.2/4.2.3 Groundwater(1) at 2.20m. From 3.00m. Occasional bands of gravel. Becoming 00-3.66 SPT N=30 3.4/6.7.8.9 From 3.00m. Occasional bands of gravel. Becoming 00-4.45 SPT N=45 9.10/12.11.10.12 4.00 00-4.45 SPT N=45 9.10/12.11.10.12 4.00						Gravel is sub-angular to sub-rounded, fine to medium of				
amathas amathas gravely, fine to coarise SAND, Grave is sub-angular to gravely, fine to coarise SAND, Grave is sub-angular to 00-2.45 SPT N=11 2.2/4.2.3 Groundwater(1) at 2.20m. From 3.00m. Occasional bands of gravel. Becoming 00-3.66 SPT N=30 3.4/6.7.8.9 From 3.00m. Occasional bands of gravel. Becoming 00-4.45 SPT N=45 9.10/12.11.10.12 4.00 00-4.45 SPT N=45 9.10/12.11.10.12 4.00	40	SV 66kPa						×		
amathas amathas gravely, fine to coarise SAND, Grave is sub-angular to gravely, fine to coarise SAND, Grave is sub-angular to 00-2.45 SPT N=11 2.2/4.2.3 Groundwater(1) at 2.20m. From 3.00m. Occasional bands of gravel. Becoming 00-3.66 SPT N=30 3.4/6.7.8.9 From 3.00m. Occasional bands of gravel. Becoming 00-4.45 SPT N=45 9.10/12.11.10.12 4.00 00-4.45 SPT N=45 9.10/12.11.10.12 4.00						(1.10)	sub-rounded, fine to medium of natural stone.	× · · · · · · · ·		
amathas amathas gravely, fine to coarise SAND, Grave is sub-angular to gravely, fine to coarise SAND, Grave is sub-angular to 00-2.45 SPT N=11 2.2/4.2.3 Groundwater(1) at 2.20m. From 3.00m. Occasional bands of gravel. Becoming 00-3.66 SPT N=30 3.4/6.7.8.9 From 3.00m. Occasional bands of gravel. Becoming 00-4.45 SPT N=45 9.10/12.11.10.12 4.00 00-4.45 SPT N=45 9.10/12.11.10.12 4.00				2,2/3,2,3,3		 		× <u>· · · · ·</u>		
amathas amathas gravely, fine to coarise SAND, Grave is sub-angular to gravely, fine to coarise SAND, Grave is sub-angular to 00-2.45 SPT N=11 2.2/4.2.3 Groundwater(1) at 2.20m. From 3.00m. Occasional bands of gravel. Becoming 00-3.66 SPT N=30 3.4/6.7.8.9 From 3.00m. Occasional bands of gravel. Becoming 00-4.45 SPT N=45 9.10/12.11.10.12 4.00 00-4.45 SPT N=45 9.10/12.11.10.12 4.00	20	SV 72kPa				- - - 1.40		× · · · · · · · · · · · · · · · · · · ·	-	
00-2.45 SPT N=11 2.2.42.2.3 Groundwater(1) at 2.20m. (2.60) 00-2.45 SPT N=30 00-2.45 SPT N=45 9.10/12.11.10.12 4.00 Complete at 4.00m	40-2.00	В					Medium dense, orangish brown, slightly slift, slightly clayey, gravelly, fine to coarse SAND. Gravel is sub-angular to sub-rounded, fine to coarse of natural stone.	*× **	×	
0.04.45 SPT N=45 9.10/12.11,10.12 4.00 Complete at 4.00m 4.00 cmarke Second Second Second Second Second Second entatic Second Second <t< td=""><td>00-2.45</td><td>SPT N=11</td><td></td><td>2.2/4.2.2.3</td><td></td><td></td><td></td><td>•× •×</td><td></td></t<>	00-2.45	SPT N=11		2.2/4.2.2.3				•× •×		
0.04.45 SPT N=45 9.10/12.11,10.12 4.00 Complete at 4.00m 4.00 cmarke Second Second Second Second Second Second entatic Second Second <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ו</td><td>×</td></t<>								ו	×	
0.04.45 SPT N=45 9.10/12.11,10.12 4.00 Complete at 4.00m 4.00 cmarke Second Second Second Second Second Second entatic Second Second <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>* *****</td><td>×</td></t<>								* *****	×	
0.04.45 SPT N=45 9.10/12.11,10.12 4.00 Complete at 4.00m 4.00 cmarke Second Second Second Second Second Second entatic Second Second <t< td=""><td></td><td></td><td></td><td></td><td></td><td>(2.60)</td><td></td><td>× ···×</td><td></td></t<>						(2.60)		× ···×		
0.04.45 SPT N=45 9.10/12.11,10.12 4.00 Complete at 4.00m 4.00 cmarke Second Second Second Second Second Second entatic Second Second <t< td=""><td>00-3.45</td><td>SPT N=30</td><td></td><td>3,4/6,7,8,9</td><td></td><td></td><td>From 3.00m: Occasional bands of gravel. Becoming</td><td>× · · · · · · · · · · · · · · · · · · ·</td><td>~</td></t<>	00-3.45	SPT N=30		3,4/6,7,8,9			From 3.00m: Occasional bands of gravel. Becoming	× · · · · · · · · · · · · · · · · · · ·	~	
0.04.45 SPT N=45 9.10/12.11,10.12 4.00 Complete at 4.00m 4.00 cmarke Second Second Second Second Second Second entatic Second Second <t< td=""><td>00-4.00</td><td>В</td><td></td><td></td><td></td><td>-</td><td>dense</td><td>× • ****</td><td>×</td></t<>	00-4.00	В				-	dense	× • ****	×	
0.04.45 SPT N=45 9.10/12.11,10.12 4.00 Complete at 4.00m 4.00 cmarke Second Second Second Second Second Second entatic Second Second <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*• •×</td><td>, .</td></t<>								*• •×	, .	
0.04.45 SPT N=45 9.10/12.11,10.12 4.00 Complete at 4.00m 4.00 cmarke Second Second Second Second Second Second entatic Second Second <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>* * × *</td><td>×</td></t<>								* * × *	×	
onaks scale scale sgale onaks statute sgale sgale sgale cation installed with 4.00m of slotted pipe surrounded by gravel for infiltration tests. 1.40 sgale sgale	0-4.45	SPT N=45		9.10/12.11.10.12		E	0	×	×.	
emarks Scale Scale Logge cation CAT scanned prior to drilling. Groundwater at 2.20m. Scale Logge Byse S location completed to undertake infiltration tests. 1:40 SD							Complete at 4.00m			
emarks Scale Scale Logge cation CAT scanned prior to drilling. Groundwater at 2.20m. Scale Logge Byse S location completed to undertake infiltration tests. 1:40 SD						-				
emarks Scale Scale Logge cation CAT scanned prior to drilling. Groundwater at 2.20m. Scale Logge Byse S location completed to undertake infiltration tests. 1:40 SD										
emarks Scale Scale Logge cation CAT scanned prior to drilling. Groundwater at 2.20m. Scale Logge Byse S location completed to undertake infiltration tests. 1:40 SD										
emarks Scale Scale Logge cation CAT scanned prior to drilling. Groundwater at 2.20m. Scale Logge Byse S location completed to undertake infiltration tests. 1:40 SD										
emarks caling drilling. Groundwater at 2.20m. Scale (approx) Logge By S location completed to undertake infiltration tests. 1:40 SD										
emarks caling drilling. Groundwater at 2.20m. Scale (approx) Logge By S location completed to undertake infiltration tests. 1:40 SD										
emarks cation CAT scanned prior to drilling. Groundwater at 2.20m. S location completed to undertake infiltration tests. Scale (approx) by cation tests. by b										
emarks cation CAT scanned prior to drilling. Groundwater at 2.20m. S location completed to undertake infiltration tests. Scale (approx) by cation tests. by b										
emarks cation CAT scanned prior to drilling. Groundwater at 2.20m. S location completed to undertake infiltration tests. Scale (approx) by cation tests. by b										
emarks cation CAT scanned prior to drilling. Groundwater at 2.20m. S location completed to undertake infiltration tests. Scale (approx) by cation tests. by b										
emarks cation CAT scanned prior to drilling. Groundwater at 2.20m. S location completed to undertake infiltration tests. > casing used during drilling. cation installed with 4.00m of slotted pipe surrounded by gravel for infiltration tests.						-				
emarks cation CAT scanned prior to drilling. Groundwater at 2.20m. S location completed to undertake infiltration tests. > casing used during drilling. cation installed with 4.00m of slotted pipe surrounded by gravel for infiltration tests.										
emarks cation CAT scanned prior to drilling. Groundwater at 2.20m. S location completed to undertake infiltration tests. > casing used during drilling. cation installed with 4.00m of slotted pipe surrounded by gravel for infiltration tests.										
emarks cation CAT scanned prior to drilling. Groundwater at 2.20m. S location completed to undertake infiltration tests. > casing used during drilling. cation installed with 4.00m of slotted pipe surrounded by gravel for infiltration tests.										
cation CAT scanned prior to drilling. Groundwater at 2.20m. S location completed to undertake infiltration tests. o casing used during drilling. cation installed with 4.00m of slotted pipe surrounded by gravel for infiltration tests.										
cation installed with 4.00m of slotted pipe surrounded by gravel for infiltration tests.	cation CAT S location	completed to underta	illing. Gro ake infiltra	undwater at 2.20m. ttion tests.			Scale (approx)	Logge By	eo	
	cation inst	alled with 4.00m of s	slotted pip	e surrounded by gravel for infilt	tration test	ts.	1:40	SD		

<u>Green Lane, Ewloe Green</u> Infiltration Test Hole No. WS1001

	Time of reading			Depth below Ground level
hrs	min	sec	mins	m
0	00	00	0.00	0.50
0	00	30	0.50	0.70
0	01	00	1.00	0.90
0	01	30	1.50	1.16
0	02	00	2.00	1.32
0	02	30	2.50	1.49
0	03	00	3.00	1.63
0	03	30	3.50	1.70
0	04	00	4.00	1.76
0	04	30	4.50	1.90
0	05	00	5.00	2.00
0	05	30	5.50	2.09
0	06	00	6.00	2.17
0	07	00	7.00	2.26
0	08	00	8.00	2.28
0	09	00	9.00	2.39
0	10	00	10.00	2.42
0	11	00	11.00	2.52
0	12	00	12.00	2.55
0	13	00	13.00	2.58
0	14	00	14.00	2.60
0	15	00	15.00	2.62
0	16	00	16.00	2.64
0	18	00	18.00	2.70
0	20	00	20.00	2.78
0	22	00	22.00	2.86
0	24	00	24.00	2.93
0	29	00	29.00	3.04
0	51	00	51.00	3.34
1	10	00	70.00	3.38
1	27	00	87.00	3.38

Test Pit Dimensio	<u>ns</u>
Test Holes Diameter (0-1m) Test Holes Diameter (1-2m) Test Holes Diameter (2-3m) Test Holes Diameter (3-4m) SPT diameter Pipe Diameter Install Depth	0.102 m 0.087 m 0.077 m 0.067 m 0.063 m 0.050 m 3.52 m
Standing Water Level	m

Infiltration Para	ameters
Total Depth	3.520 m
Total Effective Depth	3.020 m
25% Depth	1.115 m
75% Depth	2.635 m
25% Time	1.41 min
75% Time	15.74 min
Free Volume	0.004553 cu.m
Surface Area	0.397257 sq.m
Time of Outflow	14.33 min

Infiltration Test Hole No. WS1001 Time from filling (minutes) 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 0.00 0.00 0.50 1.00 Depth below ground level (m) 1.50 2.00 2.50 3.00 3.50 4.00 75% effective depth -water depth in relation to time • 25% effective depth Water Level 4.80E-02 m/hr Soil infiltration Rate

NOTE - Borehole testing is not BRE 365 compliant, caution advised on use of infiltration rates and further testing required.

1.33E-05

m/sec

<u>Green Lane, Ewloe Green</u> Infiltration Test Hole No. WS1002

Time of reading			Absolute Time	Depth below Ground level
hrs	min	sec	mins	m
0	00	00	0.00	0.50
0	00	30	0.50	0.50
0	01	00	1.00	0.50
0	01	30	1.50	0.50
0	02	00	2.00	0.55
0	02	30	2.50	0.65
0	03	00	3.00	0.68
0	03	30	3.50	0.71
0	04	00	4.00	0.73
0	05	00	5.00	0.77
0	06	00	6.00	0.83
0	07	00	7.00	0.88
0	08	00	8.00	0.92
0	09	00	9.00	0.95
0	10	00	10.00	0.95
0	11	00	11.00	1.00
0	12	00	12.00	1.04
0	13	00	13.00	1.08
0	14	00	14.00	1.09
0	15	00	15.00	1.10
0	16	00	16.00	1.11
0	17	00	17.00	1.15
0	53	00	53.00	1.66
1	23	00	83.00	1.75
1	43	00	103.00	1.85
2	03	00	123.00	1.94
2	12	00	132.00	1.96
2	21	00	141.00	1.96

Test Pit Dimensio	u <u>ns</u>
Test Holes Diameter (0-1m)	0.102 m
Test Holes Diameter (1-2m)	0.087 m
Test Holes Diameter (2-3m)	0.077 m
Test Holes Diameter (3-4m)	0.067 m
SPT diameter	0.063 m
Pipe Diameter	0.050 m
Install Depth	4.00 m
Standing Water Level	2.60 m

Infiltration Para	ameters
Total Depth	2.600 m
Total Effective Depth	2.100 m
25% Depth	0.940 m
75% Depth	1.993 m
25% Time	9.33 min
75% Time	152.87 min
Free Volume	0.003367 cu.m
Surface Area	0.292310 sq.m
Time of Outflow	143.53 min

Infiltration Test Hole No. WS1002 Time from filling (minutes) 70.00 80.00 90.00 100.00 110.00 120.00 130.00 140.00 150.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00 0.00 0.50 1.00 Depth below ground level (m) 1.50 2.00 2.50 3.00 3.50 4.00 water depth in relation to time -75% effective depth 25% effective depth -Water Level 4.81E-03 m/hr Soil infiltration Rate 1.34E-06 m/sec

NOTE - Borehole testing is not BRE 365 compliant, caution advised on use of infiltration rates and further testing required.

<u>Green Lane, Ewloe Green</u> Infiltration Test Hole No. WS1003

	Time of reading			Depth below Ground level
hrs	min	sec	mins	m
0	00	00	0.00	0.60
0	00	30	0.50	0.60
0	01	00	1.00	0.61
0	01	30	1.50	0.61
0	02	00	2.00	0.62
0	02	30	2.50	0.63
0	03	00	3.00	0.65
0	03	30	3.50	0.66
0	04	00	4.00	0.67
0	04	30	4.50	0.69
0	05	00	5.00	0.70
0	06	00	6.00	0.72
0	07	00	7.00	0.74
0	08	00	8.00	0.75
0	09	00	9.00	0.77
0	10	00	10.00	0.78
0	11	00	11.00	0.80
0	12	00	12.00	0.81
0	14	00	14.00	0.83
0	16	00	16.00	0.85
0	19	00	19.00	0.87
0	21	00	21.00	0.88
0	23	00	23.00	0.89
0	26	00	26.00	0.90

Test Pit Dimensio	<u>ins</u>
Test Holes Diameter (0-1m)	0.102 m
Test Holes Diameter (1-2m)	0.087 m
Test Holes Diameter (2-3m)	0.077 m
Test Holes Diameter (3-4m)	0.067 m
SPT diameter	0.063 m
Pipe Diameter	0.050 m
Install Depth	4.00 m
Standing Water Level	0.94 m

Infiltration Parameters				
Total Depth	0.940 m			
Total Effective Depth	0.340 m			
25% Depth	0.685 m			
75% Depth	0.855 m			
25% Time	4.38 min			
75% Time	16.75 min			
Free Volume	0.000650 cu.m			
Surface Area	0.054475 sq.m			
Time of Outflow	12.38 min			

Infiltration Test Hole No. WS1003 Time from filling (minutes) 5.00 10.00 15.00 20.00 25.00 30.00 0.00 0.00 0.10 0.20 Depth below ground level (m) 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 75% effective depth -water depth in relation to time • 25% effective depth Water Level 5.79E-02 m/hr

NOTE - Borehole testing is not BRE 365 compliant, caution advised on use of infiltration rates and further testing required.

1.61E-05

m/sec

Soil infiltration Rate

	Time of reading Absolute Time Depth below Ground level						
hrs	s min sec mins m Unable to fill - drained faster than filling.						
					Infiltration Pa	rameters	
					Total Depth	3.000 m	
					Total Effective Depth	m	
					25% Depth	0.637 m	
					75% Depth	2.120 m	
					25% Time	FAIL min	
					75% Time	FAIL min	
					Free Volume	FAIL cu.n	
					Surface Area	FAIL sq.m	
					Time of Outflow	FAIL min	
	0.00	5.00	Infiltration Te		S1004 Time from filling (n 20.00 25.00	ninutes) 30.00	
~	0.5						
pth below gro	2						
	3		-water depth in rel	ation to time			

N/A m/hr Soil infiltration Rate N/A m/sec

-Water Level

NOTE - Borehole testing is not BRE 365 compliant, caution advised on use of infiltration rates and further testing required.

25% effective depth

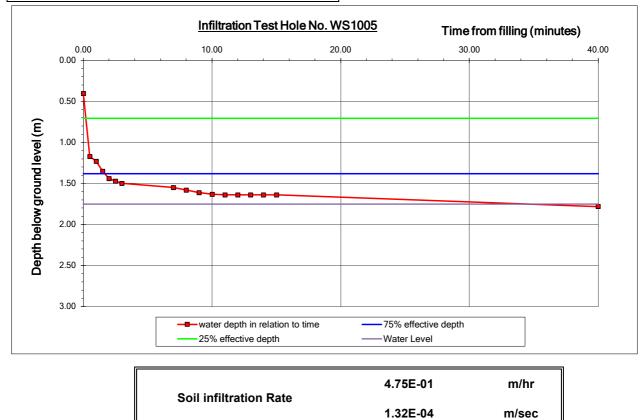
Time of reading

<u>Green Lane, Ewloe Green</u> Infiltration Test Hole No. WS1005

Coopers
Consulting Engineers

0.102 m

0.087 m 0.077 m


0.067 m 0.063 m 0.050 m

	<u>,</u>		
Depth below Ground level		Test Pit Dimensior	<u>15</u>
m			
0.40		Test Holes Diameter (0-1m)	C
1.17		Test Holes Diameter (1-2m)	C
1.23		Test Holes Diameter (2-3m)	C
1.35		Test Holes Diameter (3-4m)	C
1.44		SPT diameter	0
1.47		Pipe Diameter	C
1.50		Install Depth	
1.55		Standing Water Level	
1.58			
1.61		Infiltration Paramete	are
1.63			513
1.64			

hrs	min	sec	mins	m
0	00	00	0.00	0.40
0	00	30	0.50	1.17
0	01	00	1.00	1.23
0	01	30	1.50	1.35
0	02	00	2.00	1.44
0	02	30	2.50	1.47
0	03	00	3.00	1.50
0	07	00	7.00	1.55
0	08	00	8.00	1.58
0	09	00	9.00	1.61
0	10	00	10.00	1.63
0	11	00	11.00	1.64
0	12	00	12.00	1.64
0	13	00	13.00	1.64
0	14	00	14.00	1.64
0	15	00	15.00	1.64
0	40	00	40.00	1.78
	1			
	1			
	1			
	1		1	1

Absolute Time

Pipe Diameter	0.050 m			
Install Depth	3.00 m			
Standing Water Level	1.75 m			
Infiltration Parameters				
Total Depth	1.750 m			
Total Effective Depth	1.350 m			
25% Depth	0.705 m			
75% Depth	1.381 m			
25% Time	0.20 min			
75% Time	1.67 min			
Free Volume	0.002332 cu.m			
Surface Area	0.199774 sq.m			
Time of Outflow	1.47 min			

NOTE - Borehole testing is not BRE 365 compliant, caution advised on use of infiltration rates and further testing required.

	Time of reading		Absolute Time	Depth below Ground level
hrs	hrs min se		mins	m
0	00	00	0.00	0.50
0	00	30	0.50	0.59
0	01	00	1.00	0.62
0	01	30	1.50	0.66
0	02	00	2.00	0.69
0	02	30	2.50	0.72
0	03	00	3.00	0.73
0	03	30	3.50	0.74
0	04	00	4.00	0.75
0	04	30	4.50	0.76
0	05	00	5.00	0.78
0	06	00	6.00	0.82
0	07	00	7.00	0.85
0	08	00	8.00	0.87
0	09	00	9.00	0.90
0	10	00	10.00	0.93
0	11	00	11.00	0.96
0	12	00	12.00	0.97
0	13	00	13.00	0.99
0	14	00	14.00	1.01
0	15	00	15.00	1.03
0	16	00	16.00	1.04
0	17	00	17.00	1.05
0	18	00	18.00	1.06
0	19	00	19.00	1.07
0	20	00	20.00	1.08
0	44	00	44.00	1.36
0	52	00	52.00	1.42
2	20	00	140.00	2.33
4	13	00	253.00	2.71
4	34	00	274.00	2.80

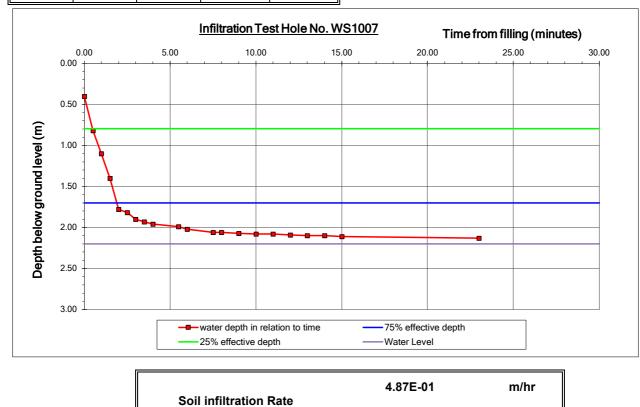
Test Pit Dimensions			
Test Holes Diameter (0-1m)	0.102 m		
()			
Test Holes Diameter (1-2m)	0.087 m		
Test Holes Diameter (2-3m)	0.077 m		
Test Holes Diameter (3-4m)	0.067 m		
SPT diameter	0.063 m		
Pipe Diameter	0.050 m		
Install Depth	4.00 m		
Standing Water Level m			

Infiltration Parameters		
Total Depth	4.000 m	
Total Effective Depth	3.500 m	
25% Depth	1.319 m	
75% Depth	3.376 m	
25% Time	40.46 min	
75% Time	432.68 min	
Free Volume	0.005839 cu.m	
Surface Area	0.509523 sq.m	
Time of Outflow	392.23 min	

Infiltration Test Hole No. WS1006 Time from filling (minutes) 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00 240.00 260.00 280.00 0.00 0.00 0.50 1.00 Depth below ground level (m) 1.50 2.00 2.50 3.00 3.50 4.00 75% effective depth -water depth in relation to time • 25% effective depth Water Level 1.75E-03 m/hr Soil infiltration Rate

NOTE - Borehole testing is not BRE 365 compliant, caution advised on use of infiltration rates and further testing required.

4.87E-07


m/sec

<u>Green Lane, Ewloe Green</u> Infiltration Test Hole No. WS1007

Time of reading			Absolute Time	Depth below Ground level
hrs	min	sec	mins	m
0	00	00	0.00	0.40
0	00	30	0.50	0.82
0	01	00	1.00	1.10
0	01	30	1.50	1.40
0	02	00	2.00	1.78
0	02	30	2.50	1.82
0	03	00	3.00	1.90
0	03	30	3.50	1.93
0	04	00	4.00	1.96
0	05	30	5.50	1.99
0	06	00	6.00	2.02
0	07	30	7.50	2.06
0	08	00	8.00	2.06
0	09	00	9.00	2.07
0	10	00	10.00	2.08
0	11	00	11.00	2.08
0	12	00	12.00	2.09
0	13	00	13.00	2.10
0	14	00	14.00	2.10
0	15	00	15.00	2.11
0	23	00	23.00	2.13

Test Pit Dimensions				
Test Holes Diameter (0-1m)	0.102 m			
Test Holes Diameter (1-2m)	0.087 m			
Test Holes Diameter (2-3m)	0.077 m			
Test Holes Diameter (3-4m)	0.067 m			
SPT diameter	0.063 m			
Pipe Diameter	0.050 m			
Install Depth	3.00 m			
Standing Water Level	2.20 m			

Infiltration Parameters				
Total Depth	2.200 m			
Total Effective Depth	1.800 m			
25% Depth	0.793 m			
75% Depth	1.700 m			
25% Time	0.47 min			
75% Time	1.89 min			
Free Volume	0.003004 cu.m			
Surface Area	0.259440 sq.m			
Time of Outflow	1.43 min			

NOTE - Borehole testing is not BRE 365 compliant, caution advised on use of infiltration rates and further testing required.

1.35E-04

m/sec

<u>Green Lane, Ewloe Green</u> Infiltration Test Hole No. WS1008

Time of reading			Absolute Time	Depth below Ground level
hrs	min	sec	mins	m
0	00	00	0.00	1.23
0	00	30	0.50	1.49
0	01	00	1.00	1.66
0	01	30	1.50	1.78
0	02	00	2.00	1.90
0	02	30	2.50	1.98
0	03	00	3.00	2.06
0	03	30	3.50	2.15
0	04	00	4.00	2.24
0	04	30	4.50	2.28
0	05	00	5.00	2.30
0	06	00	6.00	2.31
0	07	00	7.00	2.32
0	08	00	8.00	2.33
0	09	00	9.00	2.33
0	10	00	10.00	2.34
0	21	00	21.00	2.44
0	25	00	25.00	2.45
0	27	00	27.00	2.45
0	31	00	31.00	2.45
0	34	00	34.00	2.46

Test Pit Dimensions	

Test Holes Diameter (0-1m)	0.102 m
Test Holes Diameter (1-2m)	0.087 m
Test Holes Diameter (2-3m)	0.077 m
Test Holes Diameter (3-4m)	0.067 m
SPT diameter	0.063 m
Pipe Diameter	0.050 m
Install Depth	4.00 m
Standing Water Level	2.48 m

Infiltration Parameters				
Total Depth	2.480 m			
Total Effective Depth	1.250 m			
25% Depth	1.528 m			
75% Depth	2.141 m			
25% Time	0.61 min			
75% Time	3.45 min			
Free Volume	0.001881 cu.m			
Surface Area	0.163873 sq.m			
Time of Outflow	2.84 min			

Infiltration Test Hole No. WS1008 Time from filling (minutes) 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 0.00 0.50 1.00 Depth below ground level (m) 1.50 2.00 2.50 3.00 3.50 4.00 75% effective depth water depth in relation to time 25% effective depth Water Level 2.43E-01 m/hr

NOTE - Borehole testing is not BRE 365 compliant, caution advised on use of infiltration rates and further testing required.

6.74E-05

m/sec

Soil infiltration Rate

Time of reading		ng	Absolute Time	Depth below Ground leve		<u>Test Pit Dimensi</u>			ons		
hrs	G	min	sec	mins	9 1			Test H Test H Test H SPT di Pipe D Install I	oles Diame oles Diame oles Diame oles Diame ameter iameter Depth ng Water Le	ter (1-2m) ter (2-3m) ter (3-4m)	0.102 m 0.087 m 0.077 m 0.067 m 0.063 m 0.050 m 4.00 m 0.00 m
								Infiltratio	on Parame	eters	
								Total D	epth		FAIL m
								Total E	ffective De	pth	FAIL m
								25% D	epth		FAIL m
						-		75% D	epth		FAIL m
						-		25% Ti	me		FAIL min
						1		75% Ti	me		FAIL min
								Free V			0.00 cu.m
								Surface			FAIL sq.m
								Time o	f Outflow		FAIL min
				Infiltration Te			0				
	0.0	00 1	10.00 20		40.00			Tim 60.00	e from fill 70.00	i ng (minut e 80.00	es) 90.00
	0										
	0.5										
(m) 1	1 -										
Depth below ground level	1.5										
lround	2										
g wole	2.5										
pth be	3										
De	3.5										
	4										
				water depth in re 25% effective de		_		ective depth evel			
							N/A	<u> </u>	r	n/hr	
			Soi	l infiltration	Kate		N/A	L	m	/sec	

NOTE - Borehole testing is not BRE 365 compliant, caution advised on use of infiltration rates and further testing required.

Flood Consequences Assessment for Land off Holywell Road, Ewloe, Flintshire

Appendix 4

Correspondence

Dwr Cymru Welsh Water

Flintshire County Council

Natural Resources Wales

Mr Mark Fitzsimons Castle Green Homes Bridgemere House Chester Road Preston Brook Halton WA7 3BD Developer Services PO Box 3146 Cardiff CF30 0EH

Tel: +44 (0)800 917 2652 Fax: +44 (0)2920 740472 E.mail: developer.services@dwrcymru.com Gwasanaethau Datblygu Blwch Post 3146 Caerdydd CF30 0EH

Ffôn: +44 (0)800 917 2652 Ffacs: +44 (0)2920 740472 E.bost: developer.services@dwrcymru.com

Date: 09/08/2023 Our Ref: PPA0008080

Dear Mr Fitzsimons,

Grid Ref: 329131 366768 Site Address: Land off Holywell Road, Ewloe, Deeside Development: 298 Residential Units

I refer to your pre-planning enquiry received relating to the above site, seeking our views on the capacity of our network of assets and infrastructure to accommodate your proposed development. Having reviewed the details submitted I can provide the following comments which should be taken into account within any future planning application for the development.

APPRAISAL

Firstly, we note that the proposal relates to a residential development comprising of 298 units on land off Holywell Road, Ewloe, and acknowledge that the site is allocated within the Flintshire Local Development Plan (LDP) for 298 units. In reference to our representations during the LDP consultation process, namely the 'Statement of Common Ground', we can confirm that an assessment has been undertaken of the public sewerage and watermains systems to accommodate 298 units and informs our appraisal as follows.

PUBLIC SEWERAGE NETWORK

The proposed development site is located in the immediate vicinity of a mixed sewerage system, comprising combined, foul and surface water public sewers, which drains to Queensferry Wastewater Treatment Works (WwTW).

This site is crossed by a public sewer with the approximate position being marked on the attached Statutory Public Sewer Record. In accordance with the Water Industry Act 1991, Dwr Cymru Welsh Water

We welcome correspondence in Welsh and English

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'. Welso

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

requires access to its apparatus at all times in order to carry out maintenance and repairs. No part of any building will be permitted within the protection zone of the public sewer measured 3 metres either side of the centreline of the 300mm surface water sewer. Our strong recommendation is that your site layout takes into account the location of the assets crossing the site and should be referred to in any master-planning exercises or site layout plans submitted as part of any subsequent planning application. Further information regarding Asset Protection is provided in the attached Advice & Guidance note.

You are also advised that some public sewers and lateral drains may not be recorded on our maps of public sewers because they were originally privately owned and were transferred into public ownership by nature of the Water Industry (Schemes for Adoption of Private Sewers) Regulations 2011. The presence of such assets may affect the proposal. In order to assist you may contact Dwr Cymru Welsh Water on 0800 085 3968 to establish the location and status of the apparatus in and around your site. Please be mindful that under the Water Industry Act 1991 Dwr Cymru Welsh Water has rights of access to its apparatus at all times.

SURFACE WATER DRAINAGE

As of 7th January 2019, this proposed development is subject to Schedule 3 of the Flood and Water Management Act 2010. The development therefore requires approval of Sustainable Drainage Systems (SuDS) features, in accordance with the 'Statutory standards for sustainable drainage systems – designing, constructing, operating and maintaining surface water drainage systems'. As highlighted in these standards, the developer is required to explore and fully exhaust all surface water drainage options in accordance with a hierarchy which states that discharge to a combined sewer shall only be made as a last resort. Disposal should be made through the hierarchical approach, preferring infiltration and, where infiltration is not possible, disposal to a surface water drainage body in liaison with the Land Drainage Authority and/or Natural Resources Wales.

It is therefore recommended that the developer consult with Flintshire Council, as the determining SuDS Approval Body (SAB), in relation to their proposals for SuDS features. Please note, DCWW is a statutory consultee to the SAB application process and will provide comments to any SuDS proposals by response to SAB consultation. Please refer to further detailed advice relating to surface water management included in our attached Advice & Guidance note.

In addition, please note that no highway or land drainage run-off will be permitted to discharge directly or indirectly into the public sewerage system.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'. We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

FOUL WATER DRAINAGE – SEWERAGE NETWORK

We have considered the impact of foul flows generated by the proposed development and concluded it is unlikely that sufficient capacity exists to accommodate your development without causing detriment to the existing services we provide to our customers, or in regard to the protection of the environment. There are no planned reinforcement works within Dwr Cymru Welsh Water's Capital Investment Programme and therefore, at this stage, we are unable to provide you with a point of adequacy on the network.

In light of the above our recommendation is that you instruct us to undertake a Hydraulic Modelling Assessment (HMA) which is at the developer's expense and will examine the impact of the introduction of flows from your development upon the performance of the existing network and consider. Where required and appropriate, the HMA will then identify solutions and points of communication to ensure that your site can be accommodated within the system. For the developer to obtain a quotation for the HMA, we will require a fee of £250 + VAT. Please note that we will seek to control the outcomes of the HMA via appropriate planning conditions. However, in the absence of known solutions to accommodate your site we will not be able to support your development through the planning process. We therefore recommend that the HMA is undertaken in advance of a planning application being submitted, in order to avoid any subsequent delays. Further information on Hydraulic Modelling Assessments as well as any implications on the planning process is provided in the attached Advice & Guidance note.

You may need to apply to Dwr Cymru Welsh Water for any connection to the public sewer under Section 106 of the Water industry Act 1991. However, if the connection to the public sewer network is either via a lateral drain (i.e. a drain which extends beyond the connecting property boundary) or via a new sewer (i.e. serves more than one property), it is now a mandatory requirement to first enter into a Section 104 Adoption Agreement (Water Industry Act 1991). The design of the sewers and lateral drains must also conform to the Welsh Ministers Standards for Foul Sewers and Lateral Drains, and conform with the publication "Sewers for Adoption"- 7th Edition. Further information can be obtained via the Developer Services pages of <u>www.dwrcymru.com</u>.

FOUL WATER DRAINAGE – SEWAGE TREATMENT

No problems are envisaged with the Waste Water Treatment Works for the treatment of domestic discharges from this site.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'. We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

POTABLE WATER SUPPLY

Capacity is currently available in the water supply system to accommodate the development. Initial indications are that a connection can be made from the 12" diameter watermain in 329142, 366477 location. We reserve the right however to reassess our position as part of the formal application for the provision of new water mains under Section 41 and Section 51 of the Water Industry Act (1991) to ensure there is sufficient capacity available to serve the development without causing detriment to existing customers' supply as demands upon our water systems change continually.

I trust the above information is helpful and will assist you in forming water and drainage strategies that should accompany any future planning application. I also attach copies of our water and sewer extract plans for the area, and a copy of our Planning Guidance Note which provides further information on our approach to the planning process, making connections to our systems and ensuring any existing public assets or infrastructure located within new development sites are protected.

Please note that our response is based on the information provided in your enquiry and should the information change we reserve the right to make a new representation. Should you have any queries or wish to discuss any aspect of our response please do not hesitate to contact our dedicated team of planning officers, either on 0800 917 2652 or via email at developer.services@dwrcymru.com

Please quote our reference number in all communications and correspondence.

Yours faithfully,

herry

Owain George Planning Liaison Manager Developer Services

<u>Please Note</u> that demands upon the water and sewerage systems change continually; consequently the information given above should be regarded as reliable for a maximum period of 12 months from the date of this letter.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'. We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

Andy Jones

Neil L Parry (S&T - Drainage) <neil.l.parry@flintshire.gov.uk></neil.l.parry@flintshire.gov.uk>
01 March 2024 16:41
Andy Jones
Flood Risk Management
RE: FCA Historical Flood Information

You don't often get email from neil.l.parry@flintshire.gov.uk. Learn why this is important

Hi Andy

Many thanks for your appended enquiry.

The land in question is mainly Agricultural and I have looked on NRWs Flood Risk Maps there is no flooding indicated to the adjacent properties in Circular Drive although there are some hotspots to the rear of properties on Green Lane and at the North of the site adjacent to the B5125.

I have no recollection / records of any reported flooding from this area which may assist with the production of your FCA.

Should you have any further queries please do not hesitate to contact me.

Regards

Neil.

From: Andy Jones <ajones@coopers.co.uk>
Sent: Thursday, February 29, 2024 5:12 PM
To: Neil L Parry (S&T - Drainage) <Neil.L.Parry@Flintshire.Gov.UK>
Cc: Flood Risk Management <FloodRiskManagement@flintshire.gov.uk>
Subject: FCA Historical Flood Information

CAUTION: This email has reached Flintshire County Council from an external source. Please be extra cautious prior to opening any links or attachments, particularly if you weren't expecting the email or don't recognise the sender.

8352 Land off Holywell Road & Green Lane, Ewloe SJ291667 FCA Historical Flood Information

Hi Neil

We are undertaking a Flood Consequences Assessment for a proposed residential development on greenfield agricultural land at Ewloe, CH5 3DA. (see Location Plan below) and request any information you may have in relation to historical flooding or any information you may consider relevant to assist with the production of the FCA report.

Please let me know if you require any further information or please contact me on the details below should you want to discuss further.

Dear Mr Jones,

Thank you for your email which has now been passed to our data team.

Historical floodings is available here - Recorded Flood Extents | DataMapWales (gov.wales)

We can provide if the data is available, the flood model report, (old product 5), which is free of charge. Also, the raw flood model output data, (old product 6), if available, which is also free of charge. You would need the appropriate software to analyse the results, more information on this is in the attached. We could also provide product 7, which is the full flood model, for a fee of £180.00 inclusive of VAT.

Please also accept this as an acknowledgement that your request has been received.

It can take up to <u>20 working days</u> to supply data that is not available <u>online</u>, therefore if you have any queries on your data request, please <u>contact us</u>.

For further information on what you can expect from us, please visit our website:

Natural Resources Wales / Contact us or call the Customer Hub on 0300 065 3000 (open 9am-5pm, Monday to Friday).

We will therefore be in touch in due course and provide if available, products 5 & 6 and advise on product 7.

Yours sincerely,

Enw / Name Michelle Lewis

Teitl swydd / Job title Data Licensing Officer Adran / Department Customer, Communications and Commercial Rhif ffôn / Phone number 07917243096 Dyddiau gweithio (os yn berthnasol) / Working days Mon-Fri

Croesewir gohebiaeth yn Gymraeg a byddwn yn ymateb yn Gymraeg, heb i hynny arwain at oedi.

Correspondence in Welsh is welcomed, and we will respond in Welsh without it leading to a delay.

From: Andy Jones <ajones@coopers.co.uk> Sent: 29 February 2024 17:16 To: Data Distribution <datadistribution@cyfoethnaturiolcymru.gov.uk> Subject: FCA Historical Flood Information

Rhybudd: Deilliodd yr e-bost hwn o'r tu allan i'r sefydliad. Peidiwch â chlicio dolenni, atodiadau agored nac sganio codau QR oni bai eich bod yn cydnabod yr anfonwr ac yn gwybod bod y cynnwys yn ddiogel.

Caution: This email originated from outside of the organisation. Do not click links, open attachments or scan QR Codes unless you recognise the sender and know the content is safe.

8352 Land off Holywell Road & Green Lane, Ewloe SJ291667 FCA Historical Flood Information

To whom it may concern

We are undertaking a Flood Consequences Assessment for a proposed residential development on greenfield agricultural land at Ewloe, CH5 3DA. (see Location Plan below) and request any information you may have in relation to historical flooding or any

Flood Consequences Assessment for Land off Holywell Road, Ewloe, Flintshire

Appendix 5

Calculations

Source Control Greenfield Run-off Calculation

Surface Water Design - MicroDrainage Calculations

Network 1

Network 2

Network 3

Network 4

Network 5

Network 6

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Patrick Wa	alsh			Site Details		
Site name:					Latitude:	53.19253° N	
Site location:					Longitude:	3.06149° W	
This is an estimation of the greenfield runoff rates that are used to m criteria in line with Environment Agency guidance "Rainfall runoff mana SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statu (Defra, 2015). This information on greenfield runoff rates may be the b the drainage of surface water runoff from sites.				agement for developments", utory standards for SuDS	Reference: Date:	340267521 Feb 21 2024 09:07	
Runoff esti	mation a	approach	IH124				
Site charac	cteristic	S		Notes			
Total site area (h	na): ^{8.7}			(1) Is Q _{BAR} < 2.0 I	/s/ha?		
Methodolo	gy						
Q _{BAR} estimation r	Q _{BAR} estimation method:			When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.			
SPR estimation n	PR estimation method: Calculate from SOIL type						
Soil charac	teristics	S Default	Edited	(2) Are flow rate	es < 5.0 l/s	\$?	
SOIL type:		4	4				
HOST class:		N/A	N/A	Where flow rates a for discharge is us			
SPR/SPRHOST:		0.47	0.47	from vegetation ar		· · · · · · · · · · · · · · · · · · ·	
Hydrologica characteris				blockage risk is ad	dressed by us		
	51105	Default 744	Edited	drainage elements			
SAAR (mm):		144	144				
Hydrological regi	ion:	9	9	(3) Is SPR/SPRH	OST ≤ 0.3?		
Growth curve fac	ctor 1 year.	0.88	0.88	Where groundwater levels are low enough the use of soakaways to avoid discharge offsite			
Growth curve fac years:	ctor 30	1.78	1.78				
Growth curve fac years:	ctor 100	2.18	2.18	would normally be preferred for disposal of surface water runoff.			

Growth curve factor 200 years:

9	9
0.88	0.88
1.78	1.78
2.18	2.18
2.46	2.46

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	45.11	45.11
1 in 1 year (l/s):	39.69	39.69
1 in 30 years (l/s):	80.29	80.29
1 in 100 year (I/s):	98.33	98.33
1 in 200 years (I /s):	110.96	110.96

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	17.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.300	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	х

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
101	0.057	5.00	89.649	1500	328946.200	366819.225	1.425
102	0.057	5.00	89.936	1500	328959.657	366800.325	1.848
103	0.057	5.00	89.921	1500	328970.033	366791.467	1.913
104	0.057	5.00	89.072	1500	329003.208	366773.905	1.350
105	0.057	5.00	89.511	1500	328987.608	366781.963	2.040
106	0.057	5.00	88.717	1500	328896.011	366767.639	1.425
107	0.057	5.00	89.267	1500	328933.278	366744.976	2.232
108	0.057	5.00	89.654	1500	328961.088	366730.566	2.803
109	0.057	5.00	89.299	1500	328973.588	366755.229	2.686
110	0.057	5.00	88.930	1500	328986.990	366747.638	2.756
111	0.057	5.00	88.494	1500	329027.414	366724.168	2.476
112	0.057	5.00	89.153	1500	329006.187	366710.941	2.880
113	0.057	5.00	88.828	1500	329022.079	366710.143	2.649
114	0.057	5.00	88.639	1500	329030.892	366712.048	2.663
115	0.057	5.00	88.382	1500	329041.567	366718.870	2.523
116	0.057	5.00	88.058	1500	329051.584	366734.205	2.245
117	0.057	5.00	89.700	1500	329153.090	366739.925	2.125
118	0.057	5.00	90.172	1500	329162.980	366727.849	2.689
119	0.057	5.00	90.148	1500	329143.413	366712.062	2.813
120	0.057	5.00	89.641	1500	329132.249	366702.018	2.394
121	0.057	5.00	88.675	1500	329131.618	366684.630	1.522
122	0.056	5.00	89.100	1500	329122.787	366693.985	2.001
123	0.056	5.00	89.343	1500	329108.521	366705.701	2.321
124	0.056	5.00	89.077	1500	329098.543	366713.576	2.183
125	0.056	5.00	88.735	1500	329088.509	366725.028	1.904
126	0.056	5.00	88.217	2100	329068.679	366748.644	2.460
127	0.089	5.00	87.716	1500	329092.002	366767.730	2.136
128	0.089	5.00	85.157	1500	329064.317	366844.986	2.557
129	0.089	5.00	85.385	1500	329071.164	366833.571	2.863
130	0.089	5.00	85.715	1500	329082.146	366816.813	3.386
131	0.089	5.00	86.555	1500	329109.998	366782.437	4.485
132	0.089	5.00	84.552	1500	329140.937	366807.854	2.615
133	0.089	5.00	88.108	1500	329225.126	366678.227	1.350
134	0.089	5.00	87.257	1500	329235.414	366691.753	1.425
135	0.089	5.00	85.893	1500	329256.760	366715.915	1.500
136	0.089	5.00	84.664	1500	329234.635	366735.568	1.650
137	0.090	5.00	84.479	1500	329208.278	366767.787	1.638
138	0.090	5.00	83.649	1500	329175.479	366807.955	1.713
139	0.090	5.00	83.210	1800	329161.767	366824.836	3.335
140	0.090	5.00	81.171	1800	329162.502	366846.314	1.650
141			80.500	1800	329171.739	366869.910	1.603

Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
142	0.090	5.00	81.353	1800	329194.533	366846.237	2.490
143	0.090	5.00	80.876	2100	329206.956	366864.613	2.068
144	0.090	5.00	80.678	2100	329219.028	366873.528	2.633
145	0.090	5.00	80.159	2100	329257.201	366889.203	2.217
146	0.090	5.00	79.969	2400	329266.838	366896.637	2.057
147			79.725	1500	329272.842	366905.349	1.875

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	101	102	23.201	0.600	88.224	88.088	0.136	170.0	225	5.39	50.0
1.001	102	103	13.643	0.600	88.088	88.008	0.080	170.0	225	5.61	50.0
1.002	103	105	19.980	0.600	88.008	87.471	0.537	37.2	225	5.77	50.0
2.000	104	105	17.558	0.600	87.722	87.546	0.176	100.0	150	5.29	50.0
1.003	105	109	30.187	0.600	87.471	86.688	0.783	38.6	225	6.01	50.0
3.000	106	107	43.617	0.600	87.292	87.035	0.257	170.0	225	5.73	50.0
3.001	107	108	31.322	0.600	87.035	86.851	0.184	170.0	225	6.25	50.0
3.002	108	109	27.650	0.600	86.851	86.688	0.163	170.0	225	6.71	50.0
1.004	109	110	15.402	0.600	86.613	86.549	0.064	240.0	300	6.96	50.0
1.005	110	111	46.743	0.600	86.174	86.018	0.156	300.0	375	7.71	50.0
1.006	111	114	12.609	0.600	86.018	85.976	0.042	300.0	375	7.92	50.0
4.000	112	113	15.912	0.600	86.273	86.179	0.094	170.0	225	5.27	50.0
4.001	113	114	9.017	0.600	86.179	86.126	0.053	170.0	225	5.42	50.0
1.007	114	115	12.669	0.600	85.976	85.934	0.042	300.0	375	8.12	50.0
1.008	115	116	18.317	0.600	85.859	85.813	0.046	400.0	450	8.42	50.0
1.009	116	126	22.377	0.600	85.813	85.757	0.056	400.0	450	8.79	50.0
5.000	117	118	15.609	0.600	87.575	87.483	0.092	170.0	225	5.26	50.0
5.001	118	119	25.142	0.600	87.483	87.335	0.148	170.0	225	5.68	50.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	1.000	39.7	7.7	1.200	1.623	0.057	0.0	67	0.779
1.001	1.000	39.7	15.4	1.623	1.688	0.114	0.0	97	0.937
1.002	2.151	85.5	23.2	1.688	1.815	0.171	0.0	80	1.833
2.000	1.005	17.8	7.7	1.200	1.815	0.057	0.0	69	0.972
1.003	2.113	84.0	38.6	1.815	2.386	0.285	0.0	107	2.067
3.000	1.000	39.7	7.7	1.200	2.007	0.057	0.0	67	0.779
3.001	1.000	39.7	15.4	2.007	2.578	0.114	0.0	97	0.937
3.002	1.000	39.7	23.2	2.578	2.386	0.171	0.0	123	1.037
1.004	1.010	71.4	69.5	2.386	2.081	0.513	0.0	241	1.145
1.005	1.041	114.9	77.2	2.381	2.101	0.570	0.0	225	1.113
1.006	1.041	114.9	85.0	2.101	2.288	0.627	0.0	241	1.135
4.000	1.000	39.7	7.7	2.655	2.424	0.057	0.0	67	0.779
4.001	1.000	39.7	15.4	2.424	2.288	0.114	0.0	97	0.937
1.007	1.041	114.9	108.1	2.288	2.073	0.798	0.0	291	1.177
1.008	1.010	160.7	115.9	2.073	1.795	0.855	0.0	284	1.096
1.009	1.010	160.7	123.6	1.795	2.010	0.912	0.0	298	1.110
5.000	1.000	39.7	7.7	1.900	2.464	0.057	0.0	67	0.779
5.001	1.000	39.7	15.4	2.464	2.588	0.114	0.0	97	0.937

USEV	MY		Coopers Co	onsulting Eng	gineers	File: 8352 SW N1.PFD Network: Storm Network 1 Patrick Walsh 26/02/2024				Page 3	
					<u>Lin</u>	<u>ks</u>					
Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
5.002	119	120	15.017	0.600	87.335	87.247	0.088	170.0	225	5.93	50.0
5.002	120	122	12.412	0.600	87.247	87.174	0.073	170.0	225		50.0
6.000	121	122	12.865	0.600	87.153	87.099	0.054	240.0	300		50.0
5.004	122	123	18.460	0.600	87.099	87.022	0.077	240.0	300		50.0
5.005	123	124	12.711	0.600	87.022	86.969	0.053	240.0	300		50.0
5.006	124	125	15.226	0.600	86.894	86.831	0.063	240.0	375	6.87	50.0
5.007	125	126	30.837	0.600	86.831	85.757	1.074	28.7	375	7.02	50.0
1.010	126	127	30.137	0.600	85.757	85.580	0.177	170.3	225	9.29	50.0
1.011	127	131	23.241	0.600	85.580	83.945	1.635	14.2	300	9.38	50.0
7.000	128	129	13.311	0.600	82.600	82.522	0.078	170.0	225	5.22	50.0
7.001	129	130	20.036	0.600	82.522	82.404	0.118	170.0	225	5.56	50.0
7.002	130	131	44.243	0.600	82.329	82.145	0.184	240.0	300	6.29	50.0
1.012	131	132	40.041	0.600	82.070	81.937	0.133	300.0	375	10.03	50.0
1.013	132	139	26.875	0.600	81.937	81.560	0.377	71.3	450		50.0
8.000	133	134	16.994	0.600	86.758	85.907	0.851	20.0	225		50.0
8.001	134	135	32.241	0.600	85.832	84.468	1.364	23.6	225		50.0
8.002	135	136	29.593	0.600	84.393	83.014	1.379	21.5	300		50.0
8.003	136	137	41.626	0.600	83.014	82.841	0.173	240.0	300		50.0
8.004	137	138	51.858	0.600	82.841	82.011	0.830	62.5	300		50.0
8.005	138	139	21.748	0.600	81.936	81.560	0.376	57.8	375	6.71	50.0
1.014	139	140	21.491	0.600	79.875	79.821	0.054	400.0	450		50.0
1.015	140	141	25.340	0.600	79.521	78.897	0.624	40.6	450		50.0
1.016	141	143	35.613	0.600	78.897	78.808	0.089	400.0	450		50.0
9.000	142	143	22.181	0.600	78.863	78.808	0.055	400.0	450	5.37	50.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
5.002	1.000	39.7	23.2	2.588	2.169	0.171	0.0	123	1.037
5.003	1.000	39.7	30.9	2.169	1.701	0.228	0.0	150	1.102
6.000	1.010	71.4	7.7	1.222	1.701	0.057	0.0	67	0.668
5.004	1.010	71.4	46.2	1.701	2.021	0.341	0.0	176	1.073
5.005	1.010	71.4	53.8	2.021	1.808	0.397	0.0	195	1.106
5.006	1.165	128.7	61.4	1.808	1.529	0.453	0.0	183	1.153
5.007	3.392	374.6	69.0	1.529	2.085	0.509	0.0	108	2.608
1.010	0.999	39.7	200.2	2.235	1.911	1.477	0.0	225	1.017
1.011	4.191	296.2	212.2	1.836	2.310	1.566	0.0	188	4.541
7.000	1.000	39.7	12.1	2.332	2.638	0.089	0.0	85	0.879
7.001	1.000	39.7	24.1	2.638	3.086	0.178	0.0	127	1.048
7.002	1.010	71.4	36.2	3.086	4.110	0.267	0.0	151	1.014
1.012	1.041	114.9	260.5	4.110	2.240	1.922	0.0	375	1.054
1.013	2.410	383.3	272.5	2.165	1.200	2.011	0.0	282	2.607
8.000	2.941	116.9	12.1	1.125	1.125	0.089	0.0	49	1.920
8.001	2.702	107.4	24.1	1.200	1.200	0.178	0.0	73	2.196
8.002	3.408	240.9	36.2	1.200	1.350	0.267	0.0	78	2.478
8.003	1.010	71.4	48.2	1.350	1.338	0.356	0.0	181	1.082
8.004	1.992	140.8	60.4	1.338	1.338	0.446	0.0	137	1.920
8.005	2.386	263.5	72.6	1.338	1.275	0.536	0.0	134	2.052
1.014	1.010	160.7	357.4	2.885	0.900	2.637	0.0	450	1.023
1.015	3.197	508.5	369.6	1.200	1.153	2.727	0.0	285	3.471
1.016	1.010	160.7	369.6	1.153	1.618	2.727	0.0	450	1.023
9.000	1.010	160.7	12.2	2.040	1.618	0.090	0.0	83	0.604

CAU	JSEV	MY		oopers Co	onsulting En	gineers				rk 1	Page 4		
						<u>Lir</u>	<u>nks</u>						
	Name	US		Length	ks (mm) /		DS IL		Slop		T of C	Rai	
		Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	-		(mm/	-
	1.018	143	144	15.007	0.600	78.808	78.720						0.0
	1.019	144		41.266	0.600		77.942						0.0
	1.020 1.021	145 146	146 147	12.171 10.580	0.600 0.600	77.942 77.912	77.912 77.850						0.0 0.0
	1.021	140	147	10.500	0.000	77.512	//.05	0.002	170.0	5 22.	12.20	5	0.0
		Name	e Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro		
			(m/s) (I/s)	(I/s)	Depth [Depth	(ha)	Inflow	Depth	Velocity		
						(m)	(m)		(I/s)	(mm)	(m/s)		
		1.018	0.998	39.7	394.0	1.843	1.733	2.907	0.0	225	1.017		
		1.019		992.5	406.2	1.733	1.317	2.997	0.0	400	1.486		
		1.020					1.157	3.087	0.0	407	1.497		
		1.021	0.998	39.7	430.6	1.832	1.650	3.177	0.0	225	1.016		
						<u>Pipeline</u>	Schedule	2					
Link	Length	Slope	Dia		Link		US CI	US	L US	Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)		Туре		(m)	(m		(m)	(m)	(m)	(m)
1.000	23.201	170.0	225	Circular	Default Se	ewer Type		-	-	1.200		88.088	1.623
1.001	13.643	170.0	225		 Default Se					1.623		88.008	1.688
1.002	19.980	37.2	225		_ Default Se					1.688		87.471	1.815
2.000	17.558	100.0	150		 Default Se					1.200		87.546	1.815
1.003	30.187	38.6	225		_ Default Se					1.815		86.688	2.386
3.000	43.617	170.0	225		_ Default Se					1.200		87.035	2.007
3.001	31.322	170.0	225		 Default Se					2.007		86.851	2.578
3.002	27.650	170.0	225	Circular	Default Se	ewer Type	89.65	4 86.8	51	2.578	89.299	86.688	2.386
1.004	15.402	240.0	300	Circular	 Default Se	ewer Type	89.29	9 86.6	13	2.386	88.930	86.549	2.081
1.005	46.743	300.0	375	Circular	_Default Se	ewer Type	88.93	0 86.1	74	2.381	88.494	86.018	2.101
1.006	12.609	300.0	375	Circular	_Default Se	ewer Type	88.49	4 86.0	18	2.101	88.639	85.976	2.288
4.000	15.912	170.0	225	Circular	_Default Se	ewer Type	89.15	3 86.2	73	2.655	88.828	86.179	2.424
4.001	9.017	170.0	225	Circular	_Default Se	ewer Type	88.82	8 86.1	79	2.424	88.639	86.126	2.288
1.007	12.669	300.0	375		_Default Se					2.288		85.934	2.073
1.008	18.317	400.0	450		_Default Se					2.073		85.813	1.795
1.009	22.377	400.0	450	Circular	_Default Se	ewer Type	88.05	8 85.8	13	1.795	88.217	85.757	2.010
		Link	US	Dia	Node	мн	D	S Di	a N	ode	МН		
			Node	(mm)	Туре	Туре		-		уре	Туре		
		1.000	101	1500	Manhole	Adopta				nhole	Adoptable		
		1.001	102	1500	Manhole	Adopta				nhole	Adoptable		
		1.002	103	1500	Manhole	Adopta				nhole	Adoptable		
		2.000	104	1500	Manhole	Adopta				nhole	Adoptable		
		1.003	105	1500	Manhole	Adopta				nhole	Adoptable		
		3.000	106	1500	Manhole	Adopta				nhole	Adoptable		
		3.001	107	1500	Manhole	Adopta				nhole	Adoptable		
		3.002	108	1500	Manhole	Adopta				nhole	Adoptable		
		1.004	109	1500	Manhole	Adopta				nhole	Adoptable		
		1.005	110	1500	Manhole	Adopta				nhole	Adoptable		
		1.006	111 112	1500 1500	Manhole	Adopta				nhole	Adoptable		
		4.000	112	1500	Manhole	Adopta	ble 11	3 15		nhole	Adoptable	:	

Adoptable 115

Adoptable 116

1500

1500

1500

2100

Manhole Adoptable

Manhole Adoptable

Manhole Adoptable

Manhole

Adoptable

Manhole Adoptable 114

Manhole Adoptable 126

4.001 113

1.007 114

1.008 115

1.009 116

1500

1500

1500

1500

Manhole

Manhole

Coopers Consulting Engineers	File: 8352 SW N1.PFD
	Network: Storm Network 1
	Patrick Walsh
	26/02/2024

Page 5

Pipeline Schedule

						Pipeline Sc						
Link	Length	Slope	Dia		Link		US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)		Туре		(m)	(m)	(m)	(m)	(m)	(m)
5.000	15.609	170.0	225	Circular	Default Se	wer Type	89.700	87.575	1.900	90.172	87.483	2.464
5.001	25.142	170.0	225		_ Default Se		90.172	87.483	2.464	90.148	87.335	2.588
5.002	15.017	170.0	225		 Default Se		90.148	87.335	2.588	89.641	87.247	2.169
5.003	12.412	170.0	225	Circular	Default Se	wer Type	89.641	87.247	2.169	89.100	87.174	1.701
6.000	12.865	240.0	300	Circular		wer Type	88.675	87.153	1.222	89.100	87.099	1.701
5.004	18.460	240.0	300	Circular_	_Default Se	wer Type	89.100	87.099	1.701	89.343	87.022	2.021
5.005	12.711	240.0	300	Circular_	_Default Se	wer Type	89.343	87.022	2.021	89.077	86.969	1.808
5.006	15.226	240.0	375	Circular	_Default Se	wer Type	89.077	86.894	1.808	88.735	86.831	1.529
5.007	30.837	28.7	375	Circular	_Default Se	wer Type	88.735	86.831	1.529	88.217	85.757	2.085
1.010	30.137	170.3	225	Circular_	_Default Se	wer Type	88.217	85.757	2.235	87.716	85.580	1.911
1.011	23.241	14.2	300	Circular_	_Default Se	wer Type	87.716	85.580	1.836	86.555	83.945	2.310
7.000	13.311	170.0	225		_Default Se		85.157	82.600	2.332	85.385	82.522	2.638
7.001	20.036	170.0	225		_Default Se		85.385	82.522	2.638	85.715	82.404	3.086
7.002	44.243	240.0	300		_Default Se		85.715	82.329	3.086	86.555	82.145	4.110
1.012	40.041	300.0	375		_Default Se		86.555	82.070	4.110	84.552	81.937	2.240
1.013	26.875	71.3	450		_Default Se		84.552	81.937	2.165	83.210	81.560	1.200
8.000	16.994	20.0	225		_Default Se		88.108	86.758	1.125	87.257	85.907	1.125
8.001	32.241	23.6	225		_Default Se		87.257	85.832	1.200	85.893	84.468	1.200
8.002	29.593	21.5	300		_Default Se		85.893	84.393	1.200	84.664	83.014	1.350
8.003	41.626	240.0	300		_Default Se		84.664	83.014	1.350	84.479	82.841	1.338
8.004	51.858	62.5	300		_Default Se		84.479	82.841	1.338	83.649	82.011	1.338
8.005	21.748	57.8	375		_Default Se		83.649	81.936	1.338	83.210	81.560	1.275
1.014	21.491	400.0	450		_Default Se		83.210	79.875	2.885	81.171	79.821	0.900
1.015	25.340	40.6	450		_Default Se		81.171	79.521	1.200	80.500	78.897	1.153
1.016	35.613	400.0	450	Circular_	_Default Se	wer Type	80.500	78.897	1.153	80.876	78.808	1.618
		باسلا		Dia	Nodo		DC	Dia	Nodo			
		Link	US Nodo	Dia (mm)	Node	MH	DS Nodo	Dia (mm)	Node	MH		
			Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре	ام	
		5.000	Node 117	(mm) 1500	Type Manhole	Type Adoptable	Node 118	(mm) 1500	Type Manhole	Type Adoptab		
		5.000 5.001	Node 117 118	(mm) 1500 1500	Type Manhole Manhole	Type Adoptable Adoptable	Node 118 119	(mm) 1500 1500	Type Manhole Manhole	Type Adoptab Adoptab	le	
		5.000 5.001 5.002	Node 117 118 119	(mm) 1500 1500 1500	Type Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable	Node 118 119 120	(mm) 1500 1500 1500	Type Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab	le le	
		5.000 5.001 5.002 5.003	Node 117 118 119 120	(mm) 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122	(mm) 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab	le le le	
		5.000 5.001 5.002 5.003 6.000	Node 117 118 119 120 121	(mm) 1500 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122	(mm) 1500 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab	le le le	
		5.000 5.001 5.002 5.003 6.000 5.004	Node 117 118 119 120 121 122	(mm) 1500 1500 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 122 123	(mm) 1500 1500 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005	Node 117 118 119 120 121 122 123	(mm) 1500 1500 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 122 123 123 124	(mm) 1500 1500 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006	Node 117 118 119 120 121 122 123 124	(mm) 1500 1500 1500 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 123 124 125	(mm) 1500 1500 1500 1500 1500 1500 1500	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007	Node 117 118 119 120 121 122 123 124 125	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 124 125 126	(mm) 1500 1500 1500 1500 1500 1500 1500 2100	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010	Node 117 118 119 120 121 122 123 124 125 126	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 124 125 126 127	(mm) 1500 1500 1500 1500 1500 1500 2100 1500	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011	Node 117 118 119 120 121 122 123 124 125 126 127	(mm) 1500 1500 1500 1500 1500 1500 1500 2100 1500	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 124 125 126 127 131	(mm) 1500 1500 1500 1500 1500 1500 2100 1500 15	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000	Node 117 118 119 120 121 122 123 124 125 126 127 128	(mm) 1500 1500 1500 1500 1500 1500 1500 2100 1500 15	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 122 123 124 125 126 127 131 29	(mm) 1500 1500 1500 1500 1500 1500 2100 1500 15	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001	Node 117 118 119 120 121 122 123 124 125 126 127 128 129	(mm) 1500 1500 1500 1500 1500 1500 1500 2100 1500 15	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 124 125 126 127 131 129 130	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.002	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 124 125 126 127 131 129 130 131	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.001 7.002 1.012	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 124 125 126 127 131 129 130 131 132	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.002 1.012 1.013	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 122 123 124 125 126 127 131 129 130 131 132 139	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	ie le le le le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.001 7.002 1.012 1.013 8.000	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 122 123 124 125 126 127 131 129 130 131 132 139 134	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	ie le le le le le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.002 1.012 1.013	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 124 125 126 127 131 129 130 131 132 139 134 135	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le le l	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.001 7.002 1.012 1.013 8.000 8.001	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 124 125 124 125 126 127 131 129 130 131 132 139 134 135 136	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le le l	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.002 1.012 1.013 8.000 8.001 8.002	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	Node 118 119 120 122 122 123 124 125 126 127 131 129 130 131 132 139 134 135 136 137	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le le l	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.001 7.002 1.012 1.013 8.000 8.001 8.002 8.003	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable	Node 118 119 120 122 122 123 124 125 126 127 131 129 130 131 132 139 134 135 136 137 138	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	ie le le le le le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.001 7.001 7.001 7.001 8.001 8.001 8.001 8.003 8.004	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable	Node 118 119 120 122 122 122 123 124 124 125 126 127 131 129 130 131 132 139 134 135 136 137 138 139	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab	ie le le le le le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.000 7.001 7.001 7.001 7.002 1.012 1.012 1.013 8.000 8.001 8.003 8.004 8.005	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable	Node 118 119 120 122 122 122 123 124 125 126 127 131 129 130 131 132 139 134 135 136 137 138 139 140	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab	ie le le le le le le le le le le le le le	
		5.000 5.001 5.002 5.003 6.000 5.004 5.005 5.006 5.007 1.010 1.011 7.002 1.012 1.012 1.013 8.000 8.001 8.002 8.003 8.004 8.005 1.014	Node 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptable	Node 118 119 120 122 122 123 124 125 126 127 131 129 130 131 132 139 134 135 136 137 138 139 140 141	(mm) 1500 1500 1500 1500 1500 1500 1500 150	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab	ie le le le le le le le le le le le le le	

Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

CAU	ISEV		_	oopers Cor	nsulting Eng						age 6		
					ļ	Pipeline So	<u>chedule</u>						
Link	Length (m)	Slope (1:X)	Dia (mm)		Link Type		US CL (m)	US IL (m)	US Der (m)		OS CL (m)	DS IL (m)	DS Deptl (m)
9.000	22.181	400.0	450	Circular_	Default Sev	wer Type	81.353	78.863	2.0	40 80	0.876	78.808	1.61
1.018	15.007	170.5	225		Default Sev		80.876	78.808	1.8	843 80	0.678	78.720	1.73
1.019	41.266	400.0	900		Default Sev		80.678	78.045	1.7		0.159	77.942	1.31
1.020	12.171	400.0	900		Default Sev		80.159	77.942			9.969	77.912	1.15
1.021	10.580	170.6	225	Circular_	Default Sev	wer Type	79.969	77.912	1.8	32 79	9.725	77.850	1.65
		Link	US	Dia	Node	МН	DS	Dia	Node		МН		
			Node	• •	Туре	Туре	Nod	• •	Туре		Туре		
		9.000	142	1800	Manhole	Adoptabl		2100	Manho		doptable		
		1.018	143	2100	Manhole	Adoptabl		2100	Manho		doptable		
		1.019	144	2100	Manhole	Adoptabl		2100	Manho		doptable		
		1.020	145	2100	Manhole	Adoptabl		2400	Manho		doptable		
		1.021	146	2400	Manhole	Adoptabl	e 147	1500	Manho	ole Ac	doptable	9	
					<u>1</u>	<u>Manhole S</u>	<u>chedule</u>						
	Node	Eastir	-	Northing	CL	Depth	Dia	Connect	tions	Link	IL	Dia	
		(m)		(m)	(m)	(m)	(mm)				(m)	(mm	ı)
	101	328946	.200	366819.22	5 89.649	1.425	1500						
								\bigcirc	0	1.000	88.22	24 22	5
	102	328959	.657	366800.32	5 89.936	1.848	1500	4	1	1.000			
		020000				2.0.10		Γ, λ	-		00.00		•
								Q_{i}					
								0	0	1.001	88.08	38 22	5
	103	328970	.033	366791.46	7 89.921	1.913	1500		1	1.001	88.00		
	100	526576		500751.10	, 05.521	1.010	1000	1	-	1.001	00.00		
								\mathcal{O}					
								-() 0	1 002	88.00	08 22	5
	104	329003	208	366773 90	5 89.072	1.350	1500		0	1.002	00.00		5
	104	525005	.200		5 55.072	1.550	1300	° ~ ~ ~					
								\bigtriangledown					
								-	0	2.000	87.72	22 15	0
	105	328987	608	366781.96	3 89.511	2.040	1500		1	2.000			
	105	520507		200701.00	55.511	2.040	1000	2	2	1.002			
								\bowtie	<u>~</u>	1.002	57.4	÷ 22	-
								o	0	1.003	87.47	71 22	5
	106	328896	.011	366767.63	9 88.717	1.425	1500		0	1.005	57.4		_
	100	520050			5 50.717	1.725	1300	\frown					
								X,					
								- 40	0	3.000	87.29	2 22	5
	107	328033	278	366744.97	6 89.267	2.232	1500		1	3.000			
	107	520555	.2,0 .		5 55.207	2.232	1300	1	-	5.000	07.0.		-
								\mathcal{O}					
								- 3(, 0	3.001	87.03	35 22	5
		378061	088	366730.56	6 89.654	2.803	1500	^	1	3.001			
	102	JZ0201		500750.50	0 05.004	2.003	1300	1	T	5.001	00.00	22	
	108							\sim					
	108							\bigcirc	0	3.002	86.85	51 22	5

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
109	328973.588	366755.229	89.299	2.686	1500	2	1	3.002	86.688	225
						×.	2	1.003	86.688	225
						1	0	1.004	86.613	300
110	328986.990	366747.638	88.930	2.756	1500	1	1	1.004	86.549	300
							0	1.005	86.174	375
111	329027.414	366724.168	88.494	2.476	1500		1	1.005	86.018	375
						V 0	0	1.006	86.018	375
112	329006.187	366710.941	89.153	2.880	1500	$\bigcirc \rightarrow_0$				
							0	4.000	86.273	225
113	329022.079	366710.143	88.828	2.649	1500	1	1	4.000	86.179	225
							0	4.001	86.179	225
114	329030.892	366712.048	88.639	2.663	1500	2	1	4.001	86.126	225
						1-0-70	2	1.006	85.976	375
							0	1.007	85.976	375
115	329041.567	366718.870	88.382	2.523	1500	1	1	1.007	85.934	375
							0	1.008	85.859	450
116	329051.584	366734.205	88.058	2.245	1500		1	1.008	85.813	450
	220452.000	266720.025	00 700	2 4 2 5	4500	1	0	1.009	85.813	450
117	329153.090	366739.925	89.700	2.125	1500		0	E 000	87.575	225
118	220162 080	366727.849	90.172	2.689	1500		1	5.000 5.000	87.483	225
110	525102.500	500727.045	50.172	2.005	1500		1			
							0	5.001	87.483	225
119	329143.413	366712.062	90.148	2.813	1500		1	5.001	87.335	225
						-	0	5.002	87.335	225
120	329132.249	366702.018	89.641	2.394	1500		1	5.002	87.247	225
						-	0	5.003	87.247	225
121	329131.618	366684.630	88.675	1.522	1500	°				
							0	6.000		300

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
122	329122.787	366693.985	89.100	2.001	1500	1	6.000	87.099	300
						° ~ 2	5.003	87.174	225
						^{`1} 0	5.004	87.099	300
123	329108.521	366705.701	89.343	2.321	1500		5.004	87.022	300
						° ¹ 0	5.005	87.022	300
124	329098.543	366713.576	89.077	2.183	1500		5.005	86.969	300
						1 0	5.006	86.894	375
125	329088.509	366725.028	88.735	1.904	1500		5.006	86.831	375
						^{`1} O	5.007	86.831	375
126	329068.679	366748.644	88.217	2.460	2100	1	5.007	85.757	375
						2	1.009	85.757	450
						² ¹ 0	1.010	85.757	225
127	329092.002	366767.730	87.716	2.136	1500		1.010	85.580	225
						1 0	1.011	85.580	300
128	329064.317	366844.986	85.157	2.557	1500	Q	7.000	02.000	225
120	220074 464	200022 574	05 205	2.062	4500	0	7.000	82.600	225
129	329071.164	366833.571	85.385	2.863	1500		7.000	82.522	225
						• 0	7.001	82.522	225
130	329082.146	366816.813	85.715	3.386	1500		7.001	82.404	225
						0	7.002	82.329	300
131	329109.998	366782.437	86.555	4.485	1500	1 <u>1</u> 1	7.002	82.145	300
						2		83.945	300
	2224 42 227		04 5 5 0	0.645	1500	0	1.012	82.070	375
132	329140.937	366807.854	84.552	2.615	1500		1.012	81.937	375
						. 0	1.013	81.937	450
133	329225.126	366678.227	88.108	1.350	1500	()			
						0	8.000	86.758	225
134	329235.414	366691.753	87.257	1.425	1500		8.000	85.907	225
						1 0	8.001	85.832	225
					I		1		

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	5	Link	IL (m)	Dia (mm)
135	329256.760	366715.915	85.893	1.500	1500	0 –	1	8.001	84.468	225
						X'				
						1	0	8.002	84.393	300
136	329234.635	366735.568	84.664	1.650	1500	0	1	8.002	83.014	300
							0	8.003	83.014	300
137	329208.278	366767.787	84.479	1.638	1500	0	1	8.003	82.841	300
							0	8.004	82.841	300
138	329175.479	366807.955	83.649	1.713	1500	0	1	8.004	82.011	300
						\sim				
							0	0.005	01.000	275
139	329161.767	366824.836	83.210	3.335	1800	0	0	8.005 8.005	81.936 81.560	375 375
200	010101.00		00.220	0.000	2000	\square	2	1.013	81.560	450
						2	_			
140	329162.502	366846.314	81.171	1.650	1800	0	0	1.014	79.875 79.821	450 450
140	529102.302	500640.514	01.1/1	1.050	1000	Å	T	1.014	79.021	430
						φ				
	000474 700			4 6 9 9	1000	1	0	1.015	79.521	450
141	329171.739	366869.910	80.500	1.603	1800	\frown	1	1.015	78.897	450
						$\rightarrow 0$				
						1	0	1.016	78.897	450
142	329194.533	366846.237	81.353	2.490	1800	1				
						\bigcirc				
							0	9.000	78.863	450
143	329206.956	366864.613	80.876	2.068	2100	_0	1	9.000	78.808	450
						2-0/	2	1.016	78.808	450
						1	0	1.018	78.808	225
144	329219.028	366873.528	80.678	2.633	2100		1	1.018	78.720	225
						→ ⁰				
						1	0	1.019	78.045	900
145	329257.201	366889.203	80.159	2.217	2100		1	1.019	77.942	900
						1	0	1.020	77.942	900
146	329266.838	366896.637	79.969	2.057	2400	0	1	1.020	77.942	900
						Å				
							~	4 004	77.042	225
147	329272.842	366905.349	79.725	1.875	1500		0	1.021	77.912 77.850	225 225
±77	525272.042	500505.545	, , , , 23	1.075	1000	\cap	-	1.021	77.050	225
						φ				
						1				

CAUSEWAY 🛟	Coopers Consult	ing Engineers	File: 8352 SW N Network: Storm Patrick Walsh 26/02/2024		Page 10
		<u>Simulatio</u>	on Settings		
	FSR Region E M5-60 (mm) 1 Ratio-R 0 Summer CV 0 Winter CV 0	SR ngland and Wa 7.000 .300 .750 .840 Iormal	les Drain D Additiona Check D Check D	Skip Steady State own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volume 360 minute (m³) 240) 20.0) √ e √
15 30 6	0 120 18		Jurations 360 480	600 720	960 1440
R		mate Change	Additional Area	Additional Flo	w
	(years)	(CC %)	(A %)	(Q %)	
	1	0	0		0
	30 100	0 0	0 0		0 0
	100	50	0		0
	<u>P</u>	re-developmer	nt Discharge Rate		
	Site Ma	keup Greenfi	eld Growth	Factor 30 year	1.95
	Greenfield Me	•		actor 100 year	2.48
Posit	ively Drained Area	(ha)		etterment (%)	0
	SAAR	mm)		QBar	
	Soil I	ndex 1		Q 1 year (l/s)	
		SPR 0.10		Q 30 year (l/s)	
	Re Growth Factor 1	egion 1 year 0.85	C	100 year (l/s)	
		-	Discharge Volum	_	
	<u>P10</u>	e-development	Discharge Volum	<u>e</u>	
	Site M	-		Period (years)	100
	Greenfield M				0
Posi	tively Drained Are			uration (mins)	360
	5011	Index 1 SPR 0.10	B	etterment (%) PR	0
		CWI	Runof	f Volume (m ³)	
	N		'		
			ydro-Brake [®] Cont		
	lap Valve x		Objective	· . ·	upstream storage
Replaces Downstr		7	Sump Available Product Number		1000 1000 1000
	Level (m) 85.75 Depth (m) 1.800		let Diameter (m)	0.150	-1000-1800-1000
	Flow (I/s) 10.0		e Diameter (mm)	1500	
Ū.				rol	
		e 140 Uniine H	ydro-Brake [®] Cont		
	lap Valve x		Objective		upstream storage
Replaces Downstr			Sump Available	√ 	2000 2400 2222
Invort	Level (m) 77.91		Product Number		-2000-2100-2000
				11 116	
Design D	Pepth (m) 2.100 Flow (l/s) 20.0		:let Diameter (m) e Diameter (mm)	0.225 1800	

Node 143 Online Hydro-Brake [®] Control												
Flap Valve	х	Objective	(HE) Minimise upstream storage									
Downstream Link	\checkmark	Sump Available	\checkmark									
/ .	70.000		CTL CLIE 0424 4000 4000 4000									

Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	78.808	Product Number	CTL-SHE-0134-1000-1800-1000
Design Depth (m)	1.800	Min Outlet Diameter (m)	0.150
Design Flow (I/s)	10.0	Min Node Diameter (mm)	1500
Design Depth (m)	1.800	Min Outlet Diameter (m)	0.150

Node 111 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)86.018Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)

Depth (m)	Area (m²)	Inf Area (m²)									
0.000	600.0	0.0	0.600	662.0	0.0	1.200	725.0	0.0	1.800	790.0	0.0
0.200	621.0	0.0	0.800	683.0	0.0	1.400	746.0	0.0	2.000	813.0	0.0
0.400	641.0	0.0	1.000	704.0	0.0	1.600	768.0	0.0			

Node 141 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.24264	Safety Factor	2.0	Invert Level (m)	78.897
Side Inf Coefficient (m/hr)	0.24264	Porosity	1.00	Time to half empty (mins)	

Depth (m)	Area (m²)	Inf Area (m²)									
0.000	554.0	295.0	0.600	615.0	336.0	1.200	679.0	379.0	1.800	745.0	425.0
0.200	574.0	308.0	0.800	636.0	350.0	1.400	701.0	394.0	2.000	768.0	441.0
0.400	594.0	322.0	1.000	658.0	364.0	1.600	723.0	410.0			

Node 144 Depth/Area Storage Structure

Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)	Safety Factor Porosity	Invert Level (m) Time to half empty (mins)	

•	-	Inf Area (m ²)	· ·	-	_	· ·	-	-
0.000	25.0	0.0	0.800	25.0	0.0	0.801	0.0	0.0

Other (defaults)

Entry Loss (manhole)	0.250	Entry Loss (junction)	0.000	Apply Recommended Losses	х
Exit Loss (manhole)	0.250	Exit Loss (junction)	0.000	Flood Risk (m)	0.300

				26/	02/2024					
Result	ts for 1 y	ear Criti	cal Storm	Duration	. Lowest	mass baland	e: 99.69	<u>%</u>		
Node Event	US	Dook	Loval	Donth	Inflow	Nodo	Flood		Status	
Node Event	Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)		Status	
15 minute winter	101	10	88.283	0.059	6.2	0.1512	0.0000	ОК		
15 minute winter	102	11	88.176	0.088	12.2	0.2099	0.0000	OK		
15 minute winter	103	11	88.078	0.070	18.0	0.1644	0.0000	ОК		
15 minute winter	104	10	87.784	0.062	6.2	0.1623	0.0000	ОК		
15 minute winter	105	11	87.563	0.092	29.8	0.2145	0.0000	ОК		
15 minute winter	106	11	87.350	0.058	6.2	0.1497	0.0000	OK		
15 minute winter	107	11	87.118	0.083	12.1	0.1898	0.0000	OK		
15 minute winter	108	11	86.956	0.105	17.6	0.2289	0.0000	OK		
15 minute winter	109	11	86.822	0.209	53.4	0.4590	0.0000	ОК		
15 minute winter	110	10	86.727	0.553	60.2	1.2052	0.0000		RCHARGED	
360 minute winter	111	264	86.196	0.178	20.4	108.9545	0.0000	OK		
15 minute winter	112	13	86.338	0.065	6.2	0.1401	0.0000	OK		
15 minute winter	113	12	86.352	0.173	12.3	0.3799	0.0000	OK		
15 minute winter	114	12	86.345	0.369	74.5	0.8096	0.0000	OK		
15 minute winter	115	12	86.356	0.497	55.3	1.1036	0.0000		RCHARGED	
15 minute winter	116	12	86.360	0.547	50.0	1.2442	0.0000		RCHARGED	
15 minute winter 15 minute winter	117 119	10	87.634	0.059	6.2	0.1360	0.0000	OK		
15 minute winter	118 119	11 11	87.567 87.449	0.084 0.114	12.3 18.1	0.1835 0.2476	0.0000 0.0000	OK OK		
15 minute winter	120	11	87.382	0.114	23.8	0.2470	0.0000	OK		
15 minute winter	120	11	87.263	0.133	6.2	0.3032	0.0000	OK		
15 minute winter	121	11	87.263	0.110	35.1	0.2750	0.0000	OK		
15 minute winter	122	11	87.195	0.102	40.5	0.3897	0.0000	OK		
15 minute winter	123	11	87.048	0.175	45.6	0.3515	0.0000	OK		
15 minute winter	125	11	86.923	0.092	51.0	0.2171	0.0000	OK		
			001020	0.001	0 2.0	0.2272	010000	0.1		
Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	b Lin	k	Discharge	
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (ı	n³)	Vol (m³)	
15 minute winter	101	1.000	102	6.0	0.536	0.151	L 0.26	524		
15 minute winter	102	1.001	103	12.0	0.969					
15 minute winter	103		105	17.9	1.398					
15 minute winter	104	2.000	105	6.0	0.894					
15 minute winter	105	1.003	109	29.9	1.693					
15 minute winter	106	3.000	107	5.9	0.564					
15 minute winter	107	3.001	108	11.8	0.749					
15 minute winter	108	3.002	109	17.7	0.866					
15 minute winter 15 minute winter	109 110	1.004 1.005	110 111	54.4 86.0	1.120 1.967					
360 minute winter	111	1.005	111	9.2	0.530					
15 minute winter	112	4.000	114	7.5	0.528					
15 minute winter	112	4.000	113	13.6	0.839					
15 minute winter	114	1.007	115	-57.4	0.642					
15 minute winter	115	1.008	116	-51.8	0.487					
15 minute winter	116	1.009	126	-45.9	0.309					
15 minute winter	117	5.000	118	6.1	0.562					
15 minute winter	118	5.001	119	11.9	0.717					
15 minute winter	119	5.002	120	18.0	0.798					
15 minute winter	120	5.003	122	23.8	1.006					
15 minute winter	121	6.000	122	5.6	0.259					
15 minute winter	122	5.004	123	34.8	0.859					
15 minute winter	123	5.005	124	39.9	1.019	0.558	3 0.49	991		
15 minute winter	124	5.006	125	45.3	1.447	0.352	0.48	344		
15 minute winter	125	5.007	126	50.6	0.659	0.135	5 2.02	241		

15 minute summer 147

				20/1	02/2024							
<u>Resul</u>	Results for 1 year Critical Storm Duration. Lowest mass balance: 99.69%											
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status				
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)					
15 minute winter	126	12	86.363	0.606	56.3	2.3740	0.0000	SURCHARGED				
15 minute winter	127	10	85.633	0.053	19.6	0.1386	0.0000	ОК				
15 minute winter	128	10	82.675	0.075	9.7	0.1852	0.0000	ОК				
15 minute winter	129	11	82.636	0.114	19.2	0.2718	0.0000	ОК				
15 minute winter	130	11	82.463	0.134	28.2	0.3069	0.0000	ОК				
15 minute winter	131	11	82.256	0.186	56.3	0.4027	0.0000	ОК				
15 minute winter	132	11	82.069	0.132	65.5	0.3225	0.0000	ОК				
15 minute winter	133	10	86.803	0.045	9.7	0.1379	0.0000	ОК				
15 minute winter	134	10	85.897	0.065	19.2	0.1970	0.0000	ОК				
15 minute winter	135	10	84.462	0.069	28.6	0.2040	0.0000	ОК				
15 minute winter	136	11	83.173	0.159	38.0	0.4513	0.0000	ОК				
15 minute winter	137	11	82.962	0.121	47.0	0.3482	0.0000	ОК				
15 minute winter	138	11	82.060	0.124	55.6	0.3483	0.0000	ОК				
15 minute winter	139	11	80.181	0.306	129.5	0.9422	0.0000	ОК				
15 minute summer	140	9	79.818	0.297	131.0	1.0789	0.0000	ОК				
240 minute winter	141	188	79.112	0.215	43.0	122.2093	0.0000	ОК				
240 minute winter	142	188	79.112	0.249	2.4	0.8133	0.0000	ОК				
240 minute winter	143	188	79.112	0.304	9.8	1.3171	0.0000	SURCHARGED				
30 minute winter	144	24	78.194	0.149	15.8	0.6199	0.0000	ОК				
30 minute winter	145	23	78.192	0.250	21.1	1.0683	0.0000	ОК				
30 minute winter	146	23	78.192	0.280	20.5	1.5104	0.0000	SURCHARGED				

17.5

0.0000 0.0000 OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	126	Hydro-Brake®	127	10.0				
15 minute winter	127	1.011	131	19.5	2.356	0.066	0.1920	
15 minute winter	128	7.000	129	9.5	0.604	0.240	0.2108	
15 minute winter	129	7.001	130	18.9	0.969	0.475	0.3902	
15 minute winter	130	7.002	131	28.0	0.948	0.392	1.3062	
15 minute winter	131	1.012	132	56.4	1.270	0.491	1.7828	
15 minute winter	132	1.013	139	65.1	1.763	0.170	0.9930	
15 minute winter	133	8.000	134	9.6	1.752	0.082	0.0927	
15 minute winter	134	8.001	135	18.9	2.017	0.176	0.3021	
15 minute winter	135	8.002	136	28.3	1.171	0.118	0.7379	
15 minute winter	136	8.003	137	37.8	1.174	0.530	1.3427	
15 minute winter	137	8.004	138	46.4	1.776	0.329	1.3552	
15 minute winter	138	8.005	139	55.2	1.833	0.210	0.6551	
15 minute winter	139	1.014	140	127.9	1.253	0.796	2.2035	
15 minute summer	140	1.015	141	134.8	3.577	0.265	1.4183	
240 minute winter	141	1.016	143	9.0	0.251	0.056	3.3625	
240 minute winter	141	Infiltration		10.4				
240 minute winter	142	9.000	143	2.0	0.149	0.013	2.2605	
240 minute winter	143	Hydro-Brake [®]	144	9.5				
30 minute winter	144	1.019	145	14.0	0.343	0.014	4.3675	
30 minute winter	145	1.020	146	15.7	0.211	0.016	1.8935	
30 minute winter	146	Hydro-Brake®	147	18.0				88.3

1 77.850 0.000

Results for 30	year Critical Storm Duration. Lowest mass balance: 99.69%	

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)	
15 minute winter	101	10	88.318	0.094	15.0	0.2417	0.0000	ОК
15 minute winter	102	10	88.237	0.149	29.7	0.3551	0.0000	OK
15 minute winter	103	10	88.123	0.115	44.1	0.2720	0.0000	OK
15 minute winter	104	10	87.833	0.111	15.0	0.2896	0.0000	OK
15 minute winter	105	11	87.661	0.190	73.3	0.4409	0.0000	OK
15 minute winter	106	10	87.385	0.093	15.0	0.2399	0.0000	ОК
15 minute winter	107	12	87.359	0.324	29.6	0.7372	0.0000	SURCHARGED
15 minute winter	108	12	87.263	0.412	38.5	0.8960	0.0000	SURCHARGED
15 minute winter	109	11	87.086	0.473	123.7	1.0361	0.0000	SURCHARGED
15 minute summer	110	9	86.886	0.712	131.2	1.5532	0.0000	SURCHARGED
360 minute winter	111	352	86.602	0.584	54.6	369.3770	0.0000	SURCHARGED
15 minute winter	112	11	86.761	0.488	20.6	1.0553	0.0000	SURCHARGED
15 minute winter	113	11	86.740	0.561	30.0	1.2324	0.0000	SURCHARGED
15 minute winter	114	10	86.690	0.714	204.8	1.5681	0.0000	SURCHARGED
15 minute winter	115	11	86.804	0.945	157.5	2.0973	0.0000	SURCHARGED
15 minute winter	116	11	86.857	1.044	142.1	2.3743	0.0000	SURCHARGED
15 minute winter	117	12	87.777	0.202	15.0	0.4662	0.0000	ОК
15 minute winter	118	12	87.767	0.284	29.4	0.6223	0.0000	SURCHARGED
15 minute winter	119	12	87.698	0.363	40.3	0.7895	0.0000	SURCHARGED
15 minute winter	120	12	87.598	0.351	48.5	0.7872	0.0000	SURCHARGED
15 minute winter	121	11	87.454	0.301	15.0	0.7585	0.0000	SURCHARGED
15 minute winter	122	11	87.451	0.352	74.7	0.8194	0.0000	SURCHARGED
15 minute winter	123	11	87.337	0.315	88.1	0.7097	0.0000	SURCHARGED
15 minute winter	124	11	87.142	0.248	101.6	0.5652	0.0000	ОК
15 minute winter	125	11	87.017	0.186	114.8	0.4387	0.0000	ОК
Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap		•
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m	n³) Vol (m³)
(Upstream Depth) 15 minute winter	Node 101	1.000	Node 102	(I/s) 14.7	(m/s) 0.674	0.371	Vol (m	1³) Vol (m³) 60
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102	1.000 1.001	Node 102 103	(I/s) 14.7 29.1	(m/s) 0.674 1.216	0.371 0.733	Vol (m 0.50 0.32	1³) Vol (m³) 60 96
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter	Node 101 102 103	1.000 1.001 1.002	Node 102 103 105	(I/s) 14.7 29.1 43.8	(m/s) 0.674 1.216 1.588	0.371 0.733 0.512	Vol (m 0.500 0.329 2 0.558	1³) Vol (m³) 60 96 85
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 101 102 103 104	1.000 1.001 1.002 2.000	Node 102 103 105 105	(l/s) 14.7 29.1 43.8 14.6	(m/s) 0.674 1.216 1.588 1.068	0.371 0.733 0.512 0.823	Vol (m 0.500 0.329 0.558 0.24	1³) Vol (m³) 60 96 85 75
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 101 102 103 104 105	1.000 1.001 1.002 2.000 1.003	Node 102 103 105 105 109	(I/s) 14.7 29.1 43.8 14.6 72.6	(m/s) 0.674 1.216 1.588 1.068 1.841	0.371 0.733 0.512 0.823 0.864	Vol (m 0.500 0.329 0.553 0.24 1.139	1³) Vol (m³) 60 96 85 75 92
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 101 102 103 104 105 106	1.000 1.001 1.002 2.000 1.003 3.000	Node 102 103 105 105 109 107	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683	0.371 0.733 0.512 0.823 0.864 0.367	Vol (n 0.50 0.32 0.55 0.24 1.13 7 1.20	1³) Vol (m³) 60 96 85 75 92 46
(Upstream Depth) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107	1.000 1.001 1.002 2.000 1.003 3.000 3.001	Node 102 103 105 105 109 107 108	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828	0.371 0.733 0.512 0.823 0.864 0.367 0.718	Vol (n 0.50) 0.329 0.555 0.24 1.139 7 1.20 8 1.24	n ³) Vol (m ³) 60 96 85 75 92 46 57
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002	Node 102 103 105 105 109 107 108 109	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986	Vol (n 0.500 0.329 0.555 0.24 1.133 7 1.200 3 1.249 5 1.099	n ³) Vol (m ³) 60 96 85 75 92 46 57 97
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004	Node 102 103 105 105 109 107 108 109 110	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720	Vol (m 0.500 0.329 0.553 0.241 1.139 1.200 1.099 0.1.080	n ³) Vol (m ³) 60 96 85 75 92 46 57 97 46
(Upstream Depth) 15 minute winter 15 minute summer	Node 101 102 103 104 105 106 107 108 109 110	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005	Node 102 103 105 105 109 107 108 109 110 111	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290	Vol (n 0.50 0.32 0.55 0.24 1.13 1.20 1.24 1.09 0.1.08 0.3.13	1³) Vol (m³) 60 96 85 75 92 46 57 97 46 02
(Upstream Depth) 15 minute winter 15 minute summer 360 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006	Node 102 103 105 105 109 107 108 109 110 111 111	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233	Vol (n 0.50 0.32 0.55 0.24 1.13 1.20 1.24 1.24 1.09 0.1.08 0.3.13 0.3.13 0.3.13 0.3.13 0.3.13 0.3.13 0.3.24 0.55 0.55 0.24 0.55	n ³) Vol (m ³) 60 96 85 75 92 46 57 97 46 02 07
(Upstream Depth) 15 minute winter 15 minute summer 360 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112	$\begin{array}{c} 1.000\\ 1.001\\ 1.002\\ 2.000\\ 1.003\\ 3.000\\ 3.001\\ 3.002\\ 1.004\\ 1.005\\ 1.006\\ 4.000 \end{array}$	Node 102 103 105 105 109 107 108 109 110 111 114 113	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403	Vol (n 0.50) 0.322 0.555 0.24 1.132 1.20 1.24 1.20 1.24 1.20 1.24 1.20 1.24 1.20 3.130 1.39 0.3.130 3.139 3.0.31	n ³) Vol (m ³) 60 96 85 75 92 46 57 97 46 02 07 28
(Upstream Depth) 15 minute winter 15 minute summer 360 minute winter 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001	Node 102 103 105 105 109 107 108 109 110 111 114 113 114	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804	Vol (n 0.500 0.322 0.555 0.242 1.133 1.204 1.134 1.204 1.134 1.204 1.134 1.204 1.134 1.204 1.134 1.204 1.134 1.204 1.134 1.204 1.134 1.204 1.134 1.204 1.134 1.204 1.134 1.134 1.204 1.134 1	n ³) Vol (m ³) 60 96 85 75 92 46 57 97 46 02 07 28 86
(Upstream Depth) 15 minute winter 15 minute summer 360 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007	Node 102 103 105 105 109 107 108 109 110 111 114 113 114 115	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402	Vol (n 0.500 0.529 0.553 0.244 1.133 1.204 1.124 1.124 1.124 1.124 1.124 1.124 1.124 1.124 1.124 1.124 1.124 1.124 1.124 1.124 1.124 1.139 1.399 1.391 1	n ³) Vol (m ³) 60 96 85 75 92 46 57 97 46 02 07 28 86 74
(Upstream Depth) 15 minute winter 15 minute summer 360 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008	Node 102 103 105 105 109 107 108 109 110 111 114 113 114 115 116	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1 -145.7	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907	Vol (n 0.500 0.329 0.553 0.241 1.139 1.200 1.099 0.1.08 0.3.130 0.3.139 0.3.139 0.3.139 0.3.53 1.399 0.355 1.399 2.905 1.399	1³) Vol (m³) 60 96 85 75 92 46 57 97 46 02 07 28 86 74 22
(Upstream Depth) 15 minute winter 15 minute summer 360 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008 1.009	Node 102 103 105 105 109 107 108 109 110 111 114 113 114 115 116 126	(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1 -145.7 -130.3	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920 -0.823	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907 -0.811	Vol (n 0.50) 0.329 0.555 0.241 1.139 1.209 1.249 1.139 1.249 1.139 0.139 0.139 0.139 0.139 1.399 1	1³) Vol (m³) 60 96 85 75 92 46 57 97 46 02 07 28 86 74 22 55
(Upstream Depth) 15 minute winter 15 minute summer 360 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008 1.009 5.000	Node 102 103 105 109 107 108 109 110 111 114 113 114 115 116 126 118	<pre>(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1 -145.7 -130.3 14.4</pre>	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920 -0.823 0.677	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907 -0.811 0.362	Vol (n 0.50) 0.322 0.555 0.24 1.133 1.20 0.124 1.139 0.108 0.108 0.108 0.108 0.108 0.139 0.1	1³) Vol (m³) 60 96 85 75 92 46 57 97 46 02 07 28 86 74 22 55 42
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008 1.009 5.000 5.001	Node 102 103 105 109 107 108 109 110 111 114 113 114 115 116 126 118 119	<pre>(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1 -145.7 -130.3 14.4 26.4</pre>	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920 -0.823 0.677 0.799	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907 -0.811 0.362 0.663	Vol (n 0.500 0.329 0.555 0.241 1.139 1.209 0.1.084 0.1.099 0.1.084 0.1.099 0.1.084 0.1.099 0.1.084 0.1.099 0.1.084 0.1.099	1³) Vol (m³) 60 96 85 75 92 46 57 97 46 02 07 28 86 74 22 55 42 99
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008 1.009 5.000 5.001 5.002	Node 102 103 105 109 107 108 109 110 111 114 113 114 115 116 126 118 119 120	<pre>(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1 -145.7 -130.3 14.4 26.4 36.7</pre>	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920 -0.823 0.677 0.799 0.923	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907 -0.811 0.362 0.663 0.924	Vol (n 0.500 0.529 0.553 0.244 1.133 1.204 1.134 1.204 1.094 1.094 1.094 1.094 1.395 1.395 1	1³) Vol (m³) 60 96 85 75 92 46 57 97 46 02 07 28 86 74 22 55 42 99 72
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008 1.009 5.000 5.001 5.002 5.003	Node 102 103 105 105 109 107 108 109 110 111 114 113 114 115 116 126 118 119 120 122	<pre>(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1 -145.7 -130.3 14.4 26.4 36.7 49.0</pre>	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920 -0.823 0.677 0.799 0.923 1.233	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907 -0.811 0.362 0.663 0.924 1.233	Vol (n 0.500 0.529 0.553 0.244 1.133 1.200 1.024 1.139 0.1.08 0.1.08 0.1.09 0.1.08 0.1.09 0.1.08 0.1.09 0.1.08 0.3.130 0.3.542 0.0.600 0.0.999 0.0.599 0.0.491 0	vol (m³) Vol (m ³) Vol (m ³) Vol (m ³) Vol (m ³) Vol (m ³)
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008 1.009 5.000 5.001 5.002 5.003 6.000	Node 102 103 105 109 107 108 109 110 111 114 113 114 115 116 126 118 119 120 122 122	<pre>(I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1 -145.7 -130.3 14.4 26.4 36.7 49.0 13.8</pre>	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920 -0.823 0.677 0.799 0.923 1.233 0.283	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907 -0.811 0.362 0.663 0.924 1.233 0.193	Vol (n 0.500 0.329 0.553 0.244 1.139 1.204 1.120 1.244 1.139 1.244 1.139 1.244 1.139 1.244 1.139 1.244 1.139 1.399 1.399 1.399 2.900 3.139 2.900 3.139 3.542 3.049 3	vol (m³) Vol (m ³) 60 96 85 75 92 46 57 97 46 02 07 28 86 74 22 55 42 99 72 36 57
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008 1.009 5.000 5.001 5.002 5.003 6.000 5.004	Node 102 103 105 109 107 108 109 110 111 114 113 114 115 116 126 118 119 120 122 122 123	 (I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1 -145.7 -130.3 14.4 26.4 36.7 49.0 13.8 74.3 	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920 -0.823 0.677 0.799 0.923 1.233 0.283 1.055	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907 -0.811 0.362 0.663 0.924 1.233 0.193 1.040	Vol (n 0.50) 0.322 0.553 0.24 1.133 1.20 1.24 1.139 1.24 1.139 0.108 0.108 0.108 0.108 0.108 0.108 0.109 0.139 0.633 1.399 0.633 1.399 0.633 1.399 0.633 1.399 0.635 0.659 0.659 0.659 0.659 0.659 0.659 0.659 0.659 0.659 0.649 0.659 0.649 0.659 0.649 0.659 0.649 0.659 0.649 0.649 0.659 0.649 0.659	13) Vol (m ³) 60 96 85 75 92 46 57 97 46 02 07 28 86 74 22 55 42 99 72 36 57 99
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	1.000 1.001 1.002 2.000 1.003 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008 1.009 5.000 5.001 5.002 5.003 6.000 5.004 5.005	Node 102 103 105 109 107 108 109 110 111 114 113 114 115 116 126 118 119 120 122 122 122 123 124	 (I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 160 31.9 -161.1 -145.7 -130.3 14.4 26.4 36.7 49.0 13.8 74.3 87.7 	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920 -0.823 0.677 0.799 0.923 1.233 0.283 1.055 1.303	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907 -0.811 0.362 0.663 0.924 1.233 0.193 1.040 1.229	Vol (n 0.500 0.329 0.555 0.241 1.133 1.204 1.139 1.243 1.397 1.254 1.255 1.257 1	vol (m³) Vol (m ³) Vol (m ³)
(Upstream Depth) 15 minute winter 15 minute winter	Node 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	1.000 1.001 1.002 2.000 1.003 3.000 3.001 3.002 1.004 1.005 1.006 4.000 4.001 1.007 1.008 1.009 5.000 5.001 5.002 5.003 6.000 5.004	Node 102 103 105 109 107 108 109 110 111 114 113 114 115 116 126 118 119 120 122 122 123	 (I/s) 14.7 29.1 43.8 14.6 72.6 14.6 28.5 39.2 122.8 148.3 -26.8 16.0 31.9 -161.1 -145.7 -130.3 14.4 26.4 36.7 49.0 13.8 74.3 	(m/s) 0.674 1.216 1.588 1.068 1.841 0.683 0.828 0.992 1.747 2.002 -0.363 0.617 0.871 -1.461 -0.920 -0.823 0.677 0.799 0.923 1.233 0.283 1.055	0.371 0.733 0.512 0.823 0.864 0.367 0.718 0.986 1.720 1.290 -0.233 0.403 0.804 -1.402 -0.907 -0.811 0.362 0.663 0.924 1.233 0.193 1.040 1.229 0.784	Vol (n 0.500 0.529 0.553 0.244 1.133 1.204 1.134 1.204 1.034 1.394 1.295 1.395 1.295 1	vol (m³) Vol (m ³) Vol (m ³)

Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

360 minute winter 142

360 minute winter

60 minute winter

60 minute winter

60 minute winter

Infiltration

Hydro-Brake[®]

Hydro-Brake®

9.000

1.019

1.020

143

144

145

146

JEVVAI 😈					k Walsh	1			
				26/02	2/2024				
_									
<u>Re</u>	sults for	r 30 year Criti	ical Storm D	ouration.	Lowest	mass balar	<u>1ce: 99.6</u>	<u>9%</u>	
Node Event	L	JS Peak	Level	Depth I	nflow	Node	Flood	Status	
		ode (mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)		
15 minute winte		• •	86.905	1.148	128.4	4.4989	0.0000	SURCHARGED)
15 minute winte			85.648	0.068	31.6	0.1769	0.0000		
15 minute winte			82.785	0.185	23.5	0.4562	0.0000		
15 minute winte			82.761	0.239	45.1	0.5698	0.0000)
15 minute winte			82.571	0.242	66.3	0.5559	0.0000		
15 minute winte			82.366	0.296	119.2	0.6413	0.0000		
15 minute winte			82.142	0.205	141.7	0.5022	0.0000		
15 minute winte			86.829	0.071	23.5	0.2198	0.0000		
15 minute winte			85.939	0.107	46.7	0.3231	0.0000		
15 minute winte			84.502	0.109	69.6	0.3225	0.0000		
15 minute winte			83.386	0.371	92.6	1.0573	0.0000)
15 minute winte			83.052	0.211	112.5	0.6046	0.0000		
15 minute winte			82.144	0.208	132.9	0.5856	0.0000		
15 minute winte			80.480	0.605	296.5	1.8665	0.0000)
15 minute winte			80.268	0.747	318.0	2.7167	0.0000		
360 minute wint			79.510	0.613	67.1	359.8025	0.0000		
360 minute wint 60 minute winte 60 minute winte 60 minute winte	er 14 er 14	4 48 5 49	79.509 78.601 78.599 78.599	0.701 0.556 0.657 0.687	11.1 22.9 26.9 25.4	3.0392 2.3046 2.8102 3.7099	0.0000 0.0000 0.0000 0.0000	OK OK	
15 minute sumn	ner 14	7 1	77.850	0.000	19.8	0.0000	0.0000	ОК	
Link Event	US	Link	DS	Outflow	v Velo	city Flow	/Cap	Link Discha	rao
(Upstream Depth)	Node	LIIIK	Node	(I/s)	(m	-	-	/ol (m ³) Vol (n	-
15 minute winter	126	Hydro-Brak		10.0	-	, , , , , , , , , , , , , , , , , , ,			,
15 minute winter	127	1.011	131	31.6		.703	0.107	0.2714	
15 minute winter	128	7.000	129	22.2			0.557	0.4975	
15 minute winter	120	7.001	130	44.2			1.111	0.7319	
15 minute winter	130	7.001	131	66.3			0.929	2.5821	
15 minute winter	131	1.012	132	119.6			1.041	3.1050	
15 minute winter	132	1.013	139	142.2			0.371	1.7782	
15 minute winter	133	8.000	134	23.2			0.199	0.1769	
15 minute winter	134	8.001	135	46.2			0.429	0.5834	
15 minute winter	135	8.002	136	69.2			0.287	1.3846	
15 minute winter	136	8.003	137	90.1			1.262	2.5675	
15 minute winter	137	8.004	138	110.5			0.785	2.6476	
15 minute winter	138	8.005	139	132.0			0.501	1.2694	
15 minute winter	139	1.014	140	295.6			1.840	3.4023	
15 minute winter	140	1.015	141	321.0			0.631	2.1425	
360 minute winter	141	1.016	143	9.9			0.061	5.6426	

143

144

145

146

147

11.4

3.5

10.0

15.2

18.4

19.9

0.155

0.344

0.221

0.022

0.015

0.019

3.5144

18.7160

6.1806

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.69%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	101	10	88.333	0.109	19.3	0.2787	0.0000	ОК
15 minute winter	102	12	88.300	0.212	38.3	0.5056	0.0000	OK
15 minute winter	103	12	88.237	0.229	55.4	0.5415	0.0000	SURCHARGED
15 minute winter	104	12	88.196	0.474	19.3	1.2374	0.0000	SURCHARGED
15 minute winter	105	12	88.027	0.556	83.0	1.2937	0.0000	SURCHARGED
15 minute winter	106	12	87.628	0.336	19.3	0.8624	0.0000	SURCHARGED
15 minute winter	107	12	87.582	0.547	35.1	1.2467	0.0000	SURCHARGED
15 minute winter	108	12	87.452	0.601	46.4	1.3055	0.0000	SURCHARGED
15 minute winter	109	12	87.186	0.573	141.1	1.2570	0.0000	SURCHARGED
15 minute winter	110	8	86.938	0.764	158.3	1.6665	0.0000	SURCHARGED
480 minute winter	111	464	86.854	0.836	59.9	539.8792	0.0000	SURCHARGED
15 minute winter	112	10	86.908	0.635	19.3	1.3728	0.0000	SURCHARGED
15 minute winter	113	10	86.878	0.699	38.9	1.5362	0.0000	SURCHARGED
480 minute winter	114	464	86.854	0.878	30.1	1.9277	0.0000	SURCHARGED
15 minute winter	115	11	86.933	1.074	187.2	2.3832	0.0000	SURCHARGED
15 minute winter	116	11	87.006	1.193	173.4	2.7132	0.0000	SURCHARGED
15 minute winter	117	12	88.126	0.551	19.3	1.2697	0.0000	SURCHARGED
15 minute winter	118	12	88.111	0.627	32.2	1.3749	0.0000	SURCHARGED
15 minute winter	119	12	88.019	0.684	45.9	1.4847	0.0000	SURCHARGED
15 minute winter	120	12	87.881	0.634	60.2	1.4218	0.0000	SURCHARGED
15 minute winter	121	12	87.669	0.516	19.3	1.2980	0.0000	SURCHARGED
15 minute winter	122	12	87.664	0.565	88.4	1.3153	0.0000	SURCHARGED
15 minute winter	123	12	87.496	0.474	104.0	1.0676	0.0000	SURCHARGED
15 minute winter	124	11	87.325	0.431	120.3	0.9816	0.0000	SURCHARGED
15 minute winter	125	11	87.248	0.417	137.7	0.9826	0.0000	SURCHARGED
Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	b Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m	ı³) Vol (m³)
15 minute winter	101	1.000	102	19.0	0.702	0.478	0.643	34
15 minute winter	102	1.001	103	36.1	1.222	0.908	0.536	52
15 minute winter	103	1.002	105	52.2	1.586	0.611	0.794	46
15 minute winter	104	2.000	105	16.9	1.117	0.952	0.309	91
15 minute winter	105	1 003	109	79 5	1 998	0 9/6	1 200	16

15 minute winter 105 1.003 109 79.5 1.998 0.946 1.2006 106 15 minute winter 3.000 107 16.9 0.706 0.425 1.7347 15 minute winter 107 3.001 108 30.6 0.810 0.771 1.2457 15 minute winter 108 3.002 109 46.3 1.165 1.166 1.0997 1.004 15 minute winter 109 110 141.4 2.009 1.981 1.0846 15 minute winter 110 1.005 111 165.3 2.154 1.438 4.2527 480 minute winter 111 1.006 114 -29.9 0.383 -0.260 1.3907 15 minute winter 112 4.000 113 20.7 0.611 0.521 0.6328 15 minute winter 113 4.001 114 41.4 1.042 1.042 0.3586 480 minute winter 114 1.007 115 -22.2 0.501 -0.193 1.3974 15 minute winter 115 1.008 116 -176.1 -1.112 -1.096 2.9022 15 minute winter 116 1.009 126 -162.3 -1.025 -1.010 3.5455 15 minute winter 117 5.000 118 15.2 0.681 0.381 0.6208 5.001 29.8 0.810 0.751 0.9999 15 minute winter 118 119 15 minute winter 119 5.002 120 44.9 1.128 1.129 0.5972 120 15 minute winter 5.003 122 60.3 1.517 1.518 0.4936 6.000 0.9059 15 minute winter 121 122 16.8 0.300 0.235 15 minute winter 5.004 91.7 1.303 1.284 1.2999 122 123 15 minute winter 123 5.005 106.5 1.515 1.492 124 0.8951 15 minute winter 124 5.006 125 123.5 1.765 0.960 1.6794 15 minute winter 125 5.007 126 153.0 1.420 0.408 3.4012

360 minute winter 143

120 minute winter 144

120 minute winter 145

120 minute winter 146

9.000

1.019

1.020

Hydro-Brake[®]

Hydro-Brake[®]

					ck Walsł 2/2024	ı			
				20/0.	2/2024				
Res	ults for	100 year Crit	ical Storm	Duration.	. Lowes	<u>t mass bala</u>	<u>nce: 99.6</u>	<u>9%</u>	
Node Event	U		Level	•	Inflow	Node	Flood	St	atus
	No	• •	(m)	(m)	(I/s)	Vol (m ³)	(m³)	CLIDC	
15 minute winte			87.072	1.315	163.9	5.1518	0.0000		HARGED
15 minute winte			85.656	0.076	38.7	0.1963	0.0000		
15 minute winte			83.031	0.431	30.2	1.0626	0.0000		HARGED
15 minute winte			82.986	0.464	55.9	1.1089	0.0000		HARGED
15 minute winte			82.734	0.405	81.4	0.9297	0.0000		HARGED
15 minute winte			82.470	0.400	144.1	0.8649	0.0000		HARGED
15 minute winte			82.167	0.230	172.0	0.5633	0.0000		
15 minute winte			86.840	0.082	30.2	0.2526	0.0000	ОК	
15 minute winte			85.957	0.125	60.1	0.3776	0.0000	OK	
15 minute winte			84.518	0.125	89.5	0.3697	0.0000	OK	
15 minute winte			83.596	0.582	119.2	1.6556	0.0000	SURC	HARGED
15 minute winte	r 13	7 11	83.110	0.269	143.1	0.7697	0.0000	OK	
15 minute winte	r 13	8 11	82.182	0.246	169.9	0.6937	0.0000	OK	
15 minute winte	r 139	9 11	80.651	0.776	368.5	2.3941	0.0000	SURC	HARGED
15 minute winte	r 140	0 7	80.391	0.870	395.5	3.1625	0.0000	SURC	HARGED
360 minute wint	er 14:	1 344	79.738	0.841	84.2	504.2155	0.0000	SURC	HARGED
360 minute wint 360 minute wint 120 minute wint 120 minute wint 120 minute wint 15 minute sumn	er 143 er 144 er 144 er 144	3 344 4 92 5 92 6 92	79.738 79.738 78.820 78.822 78.822 78.822 77.850	0.875 0.930 0.775 0.880 0.910 0.000	5.4 11.2 21.5 24.0 24.2 19.9	2.8602 4.0315 8.4818 3.7639 4.9154 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	SURC OK OK SURC	HARGED HARGED HARGED
Link Event	US	Link	DS	Outflov	w Volc	ocity Flow	/Cap	Link	Discharge
Upstream Depth)	Node	LIIIK	Node			/s)	-	/ol (m ³)	Vol (m ³)
5 minute winter	126	Hydro-Brake		10.	-	737	•	01 (111)	vor (m)
5 minute winter	127	1.011	131	38.		.847	0.130	0.3133	
5 minute winter	128	7.000	129	26.				0.5294	
5 minute winter	129	7.001	130	53.				0.7969	
5 minute winter	130	7.001	131	79.			1.117	3.1156	
5 minute winter	131	1.012	132	, j. 143.			1.249	3.6273	
5 minute winter	132	1.013	132	170.			0.445	2.0487	
5 minute winter	132	8.000	139	29.				0.2131	
5 minute winter	133	8.000	134	29. 59.				0.7074	
5 minute winter	134	8.001	135	89.			0.369	1.4536	
			136						
5 minute winter	136 127	8.003 8.004		114.			1.603	2.8502	
5 minute winter	137 129	8.004 8.005	138	141. 160			1.003	3.4907	
5 minute winter	138	8.005	139	169. 266			0.642	1.5432	
5 minute winter	139	1.014	140	366.			2.283	3.4051	
5 minute winter	140	1.015	141	398.			0.784	2.6178	
60 minute winter	141	1.016	143	9.		.237	0.061	5.6426	
360 minute winter	141	Infiltration		11.	Э				

143

144

145

146

147

5.0

10.0

16.6

18.9

19.9

0.165

0.344

0.206

0.031

0.017

0.019

3.5144

24.9885

7.6922

15 minute winter

720 minute winter 115

114

116

117

118

119

120

121

122

123

124

125

1.007

1.008

1.009

5.000

5.001

5.002

5.003

6.000

5.004

5.005

5.006

5.007

115

116

126

118

119

120

122

122

123

124

125

126

Results for 100 year +50% CC Critical Storm Duration. Lowest mass balance: 99.69%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	101	13	89.203	0.979	29.0	2.5139	0.0000	SURCHARGED
15 minute winter	102	13	89.163	1.075	44.9	2.5627	0.0000	SURCHARGED
15 minute winter	103	13	89.060	1.052	62.3	2.4856	0.0000	SURCHARGED
15 minute winter	104	13	89.006	1.284	29.0	3.3525	0.0000	FLOOD RISK
15 minute winter	105	12	88.753	1.282	98.5	2.9813	0.0000	SURCHARGED
15 minute winter	106	12	88.405	1.113	29.0	2.8577	0.0000	SURCHARGED
15 minute winter	107	12	88.320	1.285	46.5	2.9269	0.0000	SURCHARGED
15 minute winter	108	12	88.066	1.215	67.2	2.6407	0.0000	SURCHARGED
15 minute winter	109	12	87.540	0.927	183.1	2.0330	0.0000	SURCHARGED
720 minute winter	110	690	87.379	1.205	30.8	2.6284	0.0000	SURCHARGED
720 minute winter	111	690	87.379	1.361	68.3	915.7278	0.0000	SURCHARGED
720 minute winter	112	690	87.379	1.106	3.1	2.3920	0.0000	SURCHARGED
720 minute winter	113	690	87.379	1.200	6.0	2.6361	0.0000	SURCHARGED
720 minute winter	114	690	87.379	1.403	35.9	3.0792	0.0000	SURCHARGED
720 minute winter	115	690	87.379	1.520	27.3	3.3722	0.0000	SURCHARGED
15 minute winter	116	11	87.400	1.587	219.7	3.6115	0.0000	SURCHARGED
15 minute winter	117	13	89.220	1.645	29.0	3.7895	0.0000	SURCHARGED
15 minute winter	118	13	89.194	1.711	42.2	3.7487	0.0000	SURCHARGED
15 minute winter	119	13	89.043	1.708	57.2	3.7108	0.0000	SURCHARGED
15 minute winter	120	13	88.818	1.571	73.5	3.5232	0.0000	SURCHARGED
15 minute winter	121	12	88.503	1.350	29.0	3.3963	0.0000	FLOOD RISK
15 minute winter	122	12	88.496	1.397	112.7	3.2498	0.0000	SURCHARGED
15 minute winter	123	12	88.239	1.217	133.8	2.7372	0.0000	SURCHARGED
15 minute winter	124	12	87.958	1.064	155.5	2.4250	0.0000	SURCHARGED
15 minute winter	125	12	87.810	0.979	177.9	2.3062	0.0000	SURCHARGED
Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	o Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m	n³) Vol (m³)
15 minute winter	101	1.000	102	21.0	0.729	0.529	0.92	27
15 minute winter	102	1.001	103	39.1	1.162	0.984	0.54	26
15 minute winter	103	1.002	105	58.3	1.571	0.682	0.79	46
15 minute winter	104	2.000	105	19.8	1.160	1.117	0.30	91
15 minute winter	105	1.003	109	97.1	2.442	1.156	5 1.20	06
15 minute winter	106	3.000	107	22.1	0.720	0.556	5 1.73	47
15 minute winter	107	3.001	108	43.7	1.098	1.098	3 1.24	57
15 minute winter	108	3.002	109	65.1	1.638	1.639	9 1.09	97
15 minute winter	109	1.004	110	183.4	2.604	2.568	3 1.08	46
720 minute winter	110	1.005	111	30.3	0.877	0.264	5.15	56
720 minute winter	111	1.006	114	-35.7	0.395	-0.311	L 1.39	07
720 minute winter	112	4.000	113	2.9	0.380	0.073	3 0.63	28
720 minute winter	113	4.001	114	5.8	0.530	0.145	5 0.35	86

-27.1

-24.2

-201.1

19.8

39.0

58.1

77.4

21.8

119.7

139.9

161.6

184.2

0.512

0.274

-1.270

0.689

0.981

1.461

1.947

0.325

1.700

1.987

1.723

1.670

-0.235

-0.151

-1.252

0.498

0.981

1.462

1.948

0.305

1.677

1.959

1.256

0.492

1.3974

2.9022

3.5455

0.6208

0.9999

0.5972

0.4936

0.9059

1.2999

0.8951

1.6794

15 minute winter

480 minute winter

480 minute winter

480 minute winter

480 minute winter

180 minute winter

180 minute winter

180 minute winter

129

130

131

132

133

134

135

136

137

138

139

140

141

141

142

143

144

145

146

7.001

7.002

1.012

1.013

8.000

8.001

8.002

8.003

8.004

8.005

1.014

1.015

1.016

9.000

1.019

1.020

Infiltration

Hydro-Brake[®]

Hydro-Brake®

130

131

132

139

134

135

136

137

138

139

140

141

143

143

144

145

146

147

rge
1 ³)

76.2

114.9

206.3

248.2

44.9

90.8

117.1

143.4

181.4

221.1

510.5

556.3

8.9

6.1

10.0

16.7

18.8

19.9

13.2

1.916

1.632

1.913

2.428

2.637

2.864

1.849

2.037

2.577

2.497

3.222

4.090

0.229

0.160

0.345

0.209

1.916

1.610

1.795

0.648

0.384

0.846

0.486

2.008

1.288

0.839

3.178

1.094

0.056

0.038

0.017

0.019

0.7969

3.1156

4.0719

2.7458

0.2892

1.1527

2.0839

2.9313

3.6149

1.9237

3.4051

3.7126

5.6426

3.5144

26.1533

7.7137

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	17.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.300	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	х

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
201	0.058	5.00	88.804	1800	329188.494	366636.559	2.546
202	0.058	5.00	88.364	1800	329144.181	366643.129	2.068
203	0.058	5.00	88.189	1800	329155.628	366635.193	1.928
204	0.058	5.00	88.052	1800	329173.622	366619.642	2.000
205	0.057	5.00	87.851	2100	329137.562	366578.593	1.936
206	0.057	5.00	87.741	2100	329131.805	366570.550	1.851
207	0.057	5.00	87.774	2400	329124.880	366559.325	1.917
208	0.057	5.00	87.943	1500	329090.543	366553.368	1.686
209	0.057	5.00	88.000	1500	329096.706	366551.348	2.070
210	0.057	5.00	88.000	1500	329107.278	366549.639	2.115
211	0.057	5.00	87.682	1500	329122.075	366518.021	1.632
212	0.057	5.00	87.923	1500	329119.140	366537.915	1.991
213	0.057	5.00	87.861	1500	329116.428	366552.388	2.016
214	0.000	5.00	87.716	1200	329120.496	366554.420	1.898
215	0.000		86.400	1200	329122.592	366547.871	0.610

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	201	204	22.525	0.600	86.258	86.202	0.056	400.0	600	5.31	50.0
2.000	202	203	13.929	0.600	86.296	86.261	0.035	400.0	600	5.19	50.0
2.001	203	204	23.783	0.600	86.261	86.202	0.059	403.1	600	5.52	50.0
1.001	204	205	54.638	0.600	86.052	85.915	0.137	398.8	750	6.17	50.0
1.002	205	206	9.891	0.600	85.915	85.890	0.025	395.6	750	6.29	50.0
1.003	206	207	13.189	0.600	85.890	85.857	0.033	399.7	750	6.45	50.0
1.004	207	214	6.579	0.600	85.857	85.818	0.039	168.7	225	6.56	50.0
3.000	208	209	6.486	0.600	86.257	86.230	0.027	240.0	300	5.11	50.0

Name	e Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	1.211	342.4	7.9	1.946	1.250	0.058	0.0	62	0.511
2.000	1.211	342.4	7.9	1.468	1.328	0.058	0.0	62	0.511
2.001	1.206	341.1	15.7	1.328	1.250	0.116	0.0	86	0.626
1.001	1.395	616.2	31.4	1.250	1.186	0.232	0.0	113	0.747
1.002	1.400	618.7	39.2	1.186	1.101	0.289	0.0	126	0.801
1.003	1.393	615.5	46.9	1.101	1.167	0.346	0.0	138	0.839
1.004	1.004	39.9	54.6	1.692	1.673	0.403	0.0	225	1.022
3.000	1.010	71.4	7.7	1.386	1.470	0.057	0.0	67	0.668

AUSEV	MY		Coopers Co	onsulting Eng	gineers	File: 835 Network Patrick W 26/02/20	: Storm N /alsh			Page 2	
					Lin	<u>ks</u>					
Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
3.001	209	210	10.709	0.600	85.930	85.885	0.045	240.0	300	5.28	50.0
3.002	210	213	9.554	0.600	85.885	85.845	0.040	238.9	300	5.44	50.0
4.000	211	212	20.109	0.600	86.050	85.932	0.118	170.0	300	5.28	50.0
4.001	212	213	14.725	0.600	85.932	85.845	0.087	170.0	300	5.48	50.0
3.003	213	214	4.547	0.600	85.845	85.818	0.027	168.4	225	5.56	50.0
1.005	214	215	6.876	0.600	85.818	85.790	0.028	245.6	225	6.70	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
3.001	1.010	71.4	15.4	1.770	1.815	0.114	0.0	95	0.812
3.002	1.013	71.6	23.2	1.815	1.716	0.171	0.0	117	0.906
4.000	1.203	85.0	7.7	1.332	1.691	0.057	0.0	61	0.754
4.001	1.203	85.0	15.4	1.691	1.716	0.114	0.0	86	0.921
3.003	1.004	39.9	46.3	1.791	1.673	0.342	0.0	225	1.023
1.005	0.830	33.0	101.0	1.673	0.385	0.745	0.0	225	0.845

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	22.525	400.0	600	Circular_Default Sewer Type	88.804	86.258	1.946	88.052	86.202	1.250
2.000	13.929	400.0	600	Circular_Default Sewer Type	88.364	86.296	1.468	88.189	86.261	1.328
2.001	23.783	403.1	600	Circular_Default Sewer Type	88.189	86.261	1.328	88.052	86.202	1.250
1.001	54.638	398.8	750	Circular_Default Sewer Type	88.052	86.052	1.250	87.851	85.915	1.186
1.002	9.891	395.6	750	Circular_Default Sewer Type	87.851	85.915	1.186	87.741	85.890	1.101
1.003	13.189	399.7	750	Circular_Default Sewer Type	87.741	85.890	1.101	87.774	85.857	1.167
1.004	6.579	168.7	225	Circular_Default Sewer Type	87.774	85.857	1.692	87.716	85.818	1.673
3.000	6.486	240.0	300	Circular_Default Sewer Type	87.943	86.257	1.386	88.000	86.230	1.470
3.001	10.709	240.0	300	Circular_Default Sewer Type	88.000	85.930	1.770	88.000	85.885	1.815
3.002	9.554	238.9	300	Circular_Default Sewer Type	88.000	85.885	1.815	87.861	85.845	1.716
4.000	20.109	170.0	300	Circular_Default Sewer Type	87.682	86.050	1.332	87.923	85.932	1.691
4.001	14.725	170.0	300	Circular_Default Sewer Type	87.923	85.932	1.691	87.861	85.845	1.716
3.003	4.547	168.4	225	Circular_Default Sewer Type	87.861	85.845	1.791	87.716	85.818	1.673
1.005	6.876	245.6	225	Circular_Default Sewer Type	87.716	85.818	1.673	86.400	85.790	0.385

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	201	1800	Manhole	Adoptable	204	1800	Manhole	Adoptable
2.000	202	1800	Manhole	Adoptable	203	1800	Manhole	Adoptable
2.001	203	1800	Manhole	Adoptable	204	1800	Manhole	Adoptable
1.001	204	1800	Manhole	Adoptable	205	2100	Manhole	Adoptable
1.002	205	2100	Manhole	Adoptable	206	2100	Manhole	Adoptable
1.003	206	2100	Manhole	Adoptable	207	2400	Manhole	Adoptable
1.004	207	2400	Manhole	Adoptable	214	1200	Manhole	Adoptable
3.000	208	1500	Manhole	Adoptable	209	1500	Manhole	Adoptable
3.001	209	1500	Manhole	Adoptable	210	1500	Manhole	Adoptable
3.002	210	1500	Manhole	Adoptable	213	1500	Manhole	Adoptable
4.000	211	1500	Manhole	Adoptable	212	1500	Manhole	Adoptable
4.001	212	1500	Manhole	Adoptable	213	1500	Manhole	Adoptable
3.003	213	1500	Manhole	Adoptable	214	1200	Manhole	Adoptable
1.005	214	1200	Manhole	Adoptable	215	1200	Manhole	Adoptable

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
201	329188.494	366636.559	88.804	2.546	1800				/
						\sum			
						0 0	1.000	86.258	600
202	329144.181	366643.129	88.364	2.068	1800	Q			
						0	2.000	86.296	600
203	329155.628	366635.193	88.189	1.928	1800			86.261	600
						۵ ۵	2.001	86.261	600
204	329173.622	366619.642	88.052	2.000	1800			86.202	600
							1.000	86.202	600
						0		86.052	750
205	329137.562	366578.593	87.851	1.936	2100		1.001	85.915	750
						° ^K 0	1.002	85.915	750
206	329131.805	366570.550	87.741	1.851	2100			85.890	750
						° ² 0	1.003	85.890	750
207	329124.880	366559.325	87.774	1.917	2400		-	85.857	750
						0 0	1.004	05 057	225
208	329090.543	366553.368	87.943	1.686	1500	\bigcirc	1.004	85.857	225
						0	3.000	86.257	300
209	329096.706	366551.348	88.000	2.070	1500		3.000	86.230	300
						0	3.001	85.930	300
210	329107.278	366549.639	88.000	2.115	1500	1	3.001	85.885	300
						0	3.002	85.885	300
211	329122.075	366518.021	87.682	1.632	1500	°			
						0	4.000	86.050	300
212	329119.140	366537.915	87.923	1.991	1500		4.000	85.932	300
							4.001	85.932	300
213	329116.428	366552.388	87.861	2.016	1500	1		85.845	300
						2 ⁰ 2		85.845	300
						1 0	3.003	85.845	225

CAUS	SEN	AY 🛟	Coopers Cons	ulting Eng	gineers	Netwo Patric	352 SW N2.PFD ork: Storm Network 2 k Walsh /2024	F	Page 4	
				<u>n</u>	Manhole S	Schedu	lle			
ļ	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm	Connections	Link	IL (m)	Dia (mm)
	214	329120.496	366554.420	87.716	1.898	1200		3.003 1.004	85.818	225 225
2	215	329122.592	366547.871	86.400	0.610	1200		1.005		225 225
				<u>S</u>	imulatior	n Settir	ngs			
			Methodology FSR Region M5-60 (mm) Ratio-R Summer CV Winter CV nalysis Speed	FSR England 17.000 0.300 0.750 0.840 Normal	and Wale		Skip Steady Drain Down Time (I Additional Storage (m Check Discharge Ra Check Discharge Vo 100 year 360 minute	mins) ¹³/ha) ate(s) Iume	√ 240 20.0 √	
					Storm Du		· · · · · ·	.	0.00	
	15	30 60	1 1		I	360		20	960	1440
		Re	turn Period ((years)	Climate C ۹ CC)			onal Area Additiona A %) (Q %			
			1		0		0	0		
			30 100		0 0		0 0	0 0		
			100		50		0	0		
				<u>Pre-dev</u>	elopment	t Disch	arge Rate			
				4 - 1	Currentia				05	
			Greenfield N		Greenfie IH124	Ia	Growth Factor 30 ye Growth Factor 100 ye		.95 .48	
		Positiv	ely Drained Ar		11124		Betterment (
				R (mm)				Bar		
			So	il Index	1		Q 1 year (l	/s)		
					0 10		Q 30 year (l	/s)		
					0.10					
				Region	1		Q 100 year (I			
			Growth Factor	Region						
			Growth Factor	Region 1 year	1 0.85	Dischai				
			Growth Factor <u> </u> Site	Region ⁻ 1 year Pre-devel Makeup	1 0.85 opment I Greenfi	eld	Q 100 year (l r <mark>ge Volume</mark> Return Period (yea	/s) rs) 1(00	
			Growth Factor <u>!</u> Site Greenfield	Region r 1 year Pre-devel Makeup Method	1 0.85 opment I	eld	Q 100 year (l r <u>ge Volume</u> Return Period (yea Climate Change (¹	/s) rs) 1(%) 0		
			Growth Factor ! Site Greenfield vely Drained A	Region r 1 year Pre-devel Makeup Method vrea (ha)	1 0.85 opment I Greenfi FSR/FEF	eld	Q 100 year (I r <u>ge Volume</u> Return Period (yea Climate Change (' Storm Duration (mir	/s) rs) 1(%) 0 ns) 3(60	
			Growth Factor ! Site Greenfield vely Drained A	Region r 1 year Pre-devel Makeup Method	1 0.85 opment I Greenfi	eld	Q 100 year (I r ge Volume Return Period (yea Climate Change (' Storm Duration (mir Betterment ('	/s) rs) 1(%) 0 ns) 3(60	

Patrick Walsh 26/02/2024												
Node 2	07 Online Hydro-Brake [®] Conti	rol										
Flap Valve x	Objective	(HE) Minimise upstream storage										
Replaces Downstream Link \checkmark Sump Available \checkmark												
Invert Level (m) 85.857 Product Number CTL-SHE-0094-5000-1800-5000												
Design Depth (m) 1.800 Min Outlet Diameter (m) 0.150												
Design Flow (l/s) 5.0 Min Node Diameter (mm) 1200												
Node 213 Online Hydro-Brake [®] Control												
Flap Valve x	Objective	(HE) Minimise upstream storage										
Replaces Downstream Link √	Sump Available	\checkmark										
Invert Level (m) 85.845	Product Number	CTL-SHE-0098-5000-1500-5000										
Design Depth (m) 1.500	Min Outlet Diameter (m)	0.150										
Design Flow (I/s) 5.0	Min Node Diameter (mm)	1200										
Node 207 Depth/Area Storage Structure												
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000 Depth Area Inf Area (m) (m²) (m²) 0.000 120.0 0.0	Safety Factor 2.0 Porosity 1.00 T Depth Area Inf Area (m) (m²) (m²) 1.200 120.0 0.0	Invert Level (m) 85.857 ime to half empty (mins) Depth Area Inf Area (m) (m ²) (m ²) 1.201 0.0 0.0										
Node 21	10 Depth/Area Storage Structu	<u>ure</u>										
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	Safety Factor 2.0 Porosity 1.00 T	Invert Level (m) 85.885 ime to half empty (mins)										
Depth Area Inf Area Depth Area	Inf Area Depth Area	Inf Area Depth Area Inf Area										
(m) (m ²) (m ²) (m) (m ²)	(m²) (m) (m²)	(m²) (m) (m²) (m²)										
0.000 62.0 0.0 0.600 81.0	0.0 1.200 102.0	0.0 1.800 126.0 0.0										
0.200 68.0 0.0 0.800 88.0	0.0 1.400 110.0	0.0 2.000 134.0 0.0										
0.400 74.0 0.0 1.000 95.0	0.0 1.600 118.0	0.0										
	<u>Other (defaults)</u>											
	Loss (junction) 0.000 A Loss (junction) 0.000	pply Recommended Losses x Flood Risk (m) 0.300										

Page 6

Results for 1	year Critical Storm Duration.	Lowest mass balance: 99.81%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	201	11	86.315	0.057	6.3	0.1699	0.0000	ОК
15 minute winter	202	10	86.352	0.056	6.3	0.1726	0.0000	ОК
15 minute winter	203	11	86.339	0.078	12.3	0.2467	0.0000	ОК
15 minute winter	204	11	86.150	0.098	24.0	0.3062	0.0000	ОК
240 minute winter	205	176	86.083	0.168	7.5	0.6800	0.0000	ОК
240 minute winter	206	176	86.083	0.193	8.2	0.7864	0.0000	ОК
240 minute winter	207	176	86.083	0.226	9.2	28.2514	0.0000	SURCHARGED
15 minute winter	208	10	86.320	0.063	6.2	0.1529	0.0000	ОК
120 minute winter	209	88	86.133	0.203	4.6	0.4701	0.0000	ОК
120 minute winter	210	88	86.133	0.248	7.9	16.8574	0.0000	ОК
120 minute winter	211	90	86.133	0.083	2.3	0.2057	0.0000	ОК
120 minute winter	212	88	86.133	0.201	4.6	0.4699	0.0000	ОК
120 minute winter	213	88	86.133	0.288	6.1	0.6714	0.0000	SURCHARGED
180 minute winter	214	132	85.901	0.083	8.5	0.0936	0.0000	ОК
180 minute winter	215	132	85.865	0.075	8.5	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	201	1.000	204	6.1	0.514	0.018	0.2678	
15 minute winter	202	2.000	203	6.1	0.361	0.018	0.2405	
15 minute winter	203	2.001	204	12.1	0.619	0.035	0.4632	
15 minute winter	204	1.001	205	23.6	0.609	0.038	2.1243	
240 minute winter	205	1.002	206	6.7	0.365	0.011	0.8048	
240 minute winter	206	1.003	207	7.7	0.557	0.013	1.3244	
240 minute winter	207	Hydro-Brake [®]	214	3.9				
15 minute winter	208	3.000	209	6.1	0.601	0.085	0.0654	
120 minute winter	209	3.001	210	4.2	0.579	0.059	0.6047	
120 minute winter	210	3.002	213	3.6	0.128	0.050	0.6292	
120 minute winter	211	4.000	212	2.3	0.366	0.027	0.6644	
120 minute winter	212	4.001	213	3.8	0.208	0.045	0.8805	
120 minute winter	213	Hydro-Brake [®]	214	4.6				
180 minute winter	214	1.005	215	8.5	0.685	0.257	0.0852	96.9

	Results for 30	year Critical Storm Duration.	Lowest mass balance: 99.81%
--	----------------	-------------------------------	-----------------------------

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	201	280	86.394	0.136	2.7	0.4076	0.0000	ОК
360 minute winter	202	272	86.394	0.098	2.7	0.3040	0.0000	ОК
360 minute winter	203	272	86.394	0.133	5.4	0.4180	0.0000	ОК
360 minute winter	204	272	86.394	0.342	10.8	1.0683	0.0000	ОК
360 minute winter	205	280	86.394	0.479	11.7	1.9406	0.0000	ОК
360 minute winter	206	280	86.394	0.504	12.3	2.0555	0.0000	ОК
360 minute winter	207	280	86.394	0.537	14.0	67.1788	0.0000	SURCHARGED
240 minute winter	208	192	86.650	0.393	3.5	0.9591	0.0000	SURCHARGED
240 minute winter	209	192	86.650	0.720	6.8	1.6680	0.0000	SURCHARGED
240 minute winter	210	192	86.650	0.765	13.5	58.2680	0.0000	SURCHARGED
240 minute winter	211	192	86.650	0.599	3.5	1.4784	0.0000	SURCHARGED
240 minute winter	212	192	86.650	0.718	6.4	1.6790	0.0000	SURCHARGED
240 minute winter	213	192	86.649	0.804	9.5	1.8769	0.0000	SURCHARGED
480 minute winter	214	488	85.905	0.087	9.3	0.0984	0.0000	ОК
480 minute winter	215	488	85.869	0.079	9.3	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
360 minute winter	201	1.000	204	2.7	0.407	0.008	1.4116	
360 minute winter	202	2.000	203	2.7	0.281	0.008	0.5300	
360 minute winter	203	2.001	204	5.4	0.498	0.016	1.4725	
360 minute winter	204	1.001	205	9.1	0.327	0.015	13.4442	
360 minute winter	205	1.002	206	9.7	0.328	0.016	3.0237	
360 minute winter	206	1.003	207	11.4	0.628	0.018	4.2991	
360 minute winter	207	Hydro-Brake [®]	214	4.4				
240 minute winter	208	3.000	209	3.4	0.513	0.048	0.4567	
240 minute winter	209	3.001	210	6.3	0.599	0.088	0.7541	
240 minute winter	210	3.002	213	4.5	0.098	0.063	0.6728	
240 minute winter	211	4.000	212	3.0	0.295	0.035	1.4161	
240 minute winter	212	4.001	213	6.0	0.199	0.071	1.0369	
240 minute winter	213	Hydro-Brake [®]	214	4.9				
480 minute winter	214	1.005	215	9.3	0.701	0.282	0.0911	299.1

Results for 100	year Critical Storm Duration.	Lowest mass balance: 99.81%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
240 minute winter	201	232	86.571	0.313	4.6	0.9384	0.0000	ОК
240 minute winter	202	232	86.571	0.275	4.6	0.8534	0.0000	ОК
240 minute winter	203	232	86.571	0.310	9.2	0.9745	0.0000	ОК
240 minute winter	204	232	86.571	0.519	18.4	1.6212	0.0000	ОК
240 minute winter	205	232	86.571	0.656	19.2	2.6578	0.0000	OK
240 minute winter	206	232	86.571	0.681	19.9	2.7775	0.0000	ОК
240 minute winter	207	232	86.571	0.714	22.6	89.3254	0.0000	SURCHARGED
240 minute winter	208	228	86.964	0.707	4.6	1.7267	0.0000	SURCHARGED
240 minute winter	209	228	86.964	1.034	8.4	2.3963	0.0000	SURCHARGED
240 minute winter	210	228	86.964	1.079	19.7	87.9795	0.0000	SURCHARGED
240 minute winter	211	228	86.964	0.914	4.6	2.2532	0.0000	SURCHARGED
240 minute winter	212	228	86.964	1.032	8.6	2.4142	0.0000	SURCHARGED
240 minute winter	213	228	86.964	1.119	12.7	2.6099	0.0000	SURCHARGED
240 minute winter	214	476	85.905	0.087	9.3	0.0984	0.0000	OK
240 minute winter	215	476	85.869	0.079	9.3	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
240 minute winter	201	1.000	204	4.6	0.473	0.013	3.7186	
240 minute winter	202	2.000	203	4.6	0.338	0.013	1.8975	
240 minute winter	203	2.001	204	9.2	0.563	0.027	3.9045	
240 minute winter	204	1.001	205	14.7	0.364	0.024	20.0337	
240 minute winter	205	1.002	206	15.4	0.372	0.025	4.0968	
240 minute winter	206	1.003	207	18.1	0.713	0.029	5.6219	
240 minute winter	207	Hydro-Brake [®]	214	4.4				
240 minute winter	208	3.000	209	3.9	0.526	0.055	0.4567	
240 minute winter	209	3.001	210	7.9	0.612	0.110	0.7541	
240 minute winter	210	3.002	213	-7.3	-0.104	-0.102	0.6728	
240 minute winter	211	4.000	212	4.0	0.296	0.047	1.4161	
240 minute winter	212	4.001	213	8.1	0.213	0.095	1.0369	
240 minute winter	213	Hydro-Brake [®]	214	4.9				
240 minute winter	214	1.005	215	9.3	0.701	0.282	0.0911	224.5

Results for 100 year +50% CC Critical Storm Duration. Lowest mass balance: 99.81%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	201	344	87.552	1.294	5.2	3.8830	0.0000	SURCHARGED
360 minute winter	202	344	87.552	1.256	5.2	3.8999	0.0000	SURCHARGED
360 minute winter	203	344	87.552	1.291	9.4	4.0609	0.0000	SURCHARGED
360 minute winter	204	344	87.552	1.500	16.6	4.6890	0.0000	SURCHARGED
360 minute winter	205	344	87.554	1.639	16.7	6.6410	0.0000	FLOOD RISK
360 minute winter	206	344	87.554	1.664	18.3	6.7880	0.0000	FLOOD RISK
360 minute winter	207	344	87.554	1.697	21.9	152.7484	0.0000	FLOOD RISK
240 minute winter	208	232	87.532	1.275	6.8	3.1151	0.0000	SURCHARGED
240 minute winter	209	232	87.532	1.602	12.8	3.7137	0.0000	SURCHARGED
240 minute winter	210	232	87.532	1.647	32.7	150.9961	0.0000	SURCHARGED
240 minute winter	211	232	87.532	1.482	6.8	3.6544	0.0000	FLOOD RISK
240 minute winter	212	232	87.532	1.600	12.8	3.7439	0.0000	SURCHARGED
240 minute winter	213	232	87.532	1.687	18.8	3.9356	0.0000	SURCHARGED
360 minute winter	214	344	85.909	0.091	10.0	0.1024	0.0000	ОК
360 minute winter	215	344	85.872	0.082	10.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
360 minute winter	201	1.000	204	4.0	0.446	0.012	6.3448	
360 minute winter	202	2.000	203	4.4	0.329	0.013	3.9235	
360 minute winter	203	2.001	204	8.1	0.523	0.024	6.6991	
360 minute winter	204	1.001	205	12.4	0.355	0.020	24.0473	
360 minute winter	205	1.002	206	14.5	0.385	0.023	4.3532	
360 minute winter	206	1.003	207	17.4	0.686	0.028	5.8048	
360 minute winter	207	Hydro-Brake®	214	4.8				
240 minute winter	208	3.000	209	6.0	0.542	0.084	0.4567	
240 minute winter	209	3.001	210	12.0	0.682	0.168	0.7541	
240 minute winter	210	3.002	213	-13.9	-0.198	-0.194	0.6728	
240 minute winter	211	4.000	212	6.0	0.335	0.070	1.4161	
240 minute winter	212	4.001	213	12.0	0.243	0.141	1.0369	
240 minute winter	213	Hydro-Brake [®]	214	5.2				
360 minute winter	214	1.005	215	10.0	0.715	0.303	0.0960	290.7

uBC	-

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	17.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.300	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
301	0.043	5.00	88.150	1800	329132.010	366628.841	1.943
302	0.043	5.00	88.000	1800	329116.257	366615.832	1.844
303	0.043	5.00	88.000	1800	329104.255	366606.492	1.882
304	0.042	5.00	88.109	1800	329089.795	366589.263	2.047
305	0.000		88.253	1200	329088.305	366587.003	2.239

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	-	T of C (mins)	Rain (mm/hr)
1.000	301	302	20.430	0.600	86.207	86.156	0.051	• •	600	5.28	50.0
1.000	201	302	20.450	0.000	80.207	00.100	0.051	400.0	000	5.20	50.0
1.001	302	303	15.208	0.600	86.156	86.118	0.038	400.2	600	5.49	50.0
1.002	303	304	22.493	0.600	86.118	86.062	0.056	401.7	600	5.80	50.0
1.003	304	305	8.228	0.600	86.062	86.014	0.048	171.4	225	5.94	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)		DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	1.211	342.4	5.8	1.343	1.244	0.043	0.0	54	0.467
1.001	1.211	342.3	11.7	1.244	1.282	0.086	0.0	75	0.575
1.002	1.209	341.7	17.5	1.282	1.447	0.129	0.0	91	0.647
1.003	0.995	39.6	23.2	1.822	2.014	0.171	0.0	123	1.033

Pipeline Schedule

Link	Length	Slope	Dia		Link		US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)		Туре		(m)	(m)	(m)	(m)	(m)	(m)
1.000	20.430	400.0	600	Circular	_Default Sev	ver Type	88.150	86.207	1.343	88.000	86.156	1.244
1.001	15.208	400.2	600	Circular_	_Default Sev	ver Type	88.000	86.156	1.244	88.000	86.118	1.282
1.002	22.493	401.7	600	Circular_	_Default Sev	ver Type	88.000	86.118	1.282	88.109	86.062	1.447
1.003	8.228	171.4	225	Circular_	_Default Sev	ver Type	88.109	86.062	1.822	88.253	86.014	2.014
		Link	US	Dia	Node	МН	DS	Dia	Node	МН		

LINK	US	Dia	Node	IVIH	05	Dia	Node	IVIH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	301	1800	Manhole	Adoptable	302	1800	Manhole	Adoptable
1.001	302	1800	Manhole	Adoptable	303	1800	Manhole	Adoptable
1.002	303	1800	Manhole	Adoptable	304	1800	Manhole	Adoptable
1.003	304	1800	Manhole	Adoptable	305	1200	Manhole	Adoptable

Coopers Consulting Engineers	File: 8352 SW N3.PFD	Page 2
	Network: Storm Network 3 Patrick Walsh 26/02/2024	

Manhole Schedule

CAUSEWAY

			<u></u>		<u>circuu</u>					
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)		ections	Link	IL (m)	Dia (mm)
301	329132.010	366628.841	88.150	1.943	1800					
							I			
						0	0	1.000	86.207	600
302	329116.257	366615.832	88.000	1.844	1800		1 1	1.000	86.156	600
						0	0	1.001	86.156	600
303	329104.255	366606.492	88.000	1.882	1800	\square	1 1	1.001	86.118	600
						04	0	1.002	86.118	600
304	329089.795	366589.263	88.109	2.047	1800	Ø	1 1	1.002	86.062	600
						oK	0	1.003	86.062	225
305	329088.305	366587.003	88.253	2.239	1200	Ø	, 1	1.003	86.014	225
			<u>Si</u>	mulation	Settin	gs		I		
		Methodology FSR Region M5-60 (mm) Ratio-R	FSR England : 17.000 0.300	and Wale		Drain Do Additional	kip Steady wn Time (Storage (n scharge R	mins) n³∕ha)	√ 240 20.0 √	
		Summer CV	0.750				scharge Vo	• •	\checkmark	
		Winter CV	0.840			100 year 3	60 minute	e (m³)		
	Ar	nalysis Speed	Normal							
				Storm Du	irations	;				
15	30 60	120	180 2	40 3	360	480	600 7	20	960	1440
	Re	turn Period (years)	Climate Ch (CC %	-		nal Area %)	Additiona (Q %			
		1		0		0		0		
		30 100		0 50		0 0		0 0		
			Pre-deve		Discha	irge Rate				

Site Makeup	Greenfield	Growth Factor 30 year	1.95
Greenfield Method	IH124	Growth Factor 100 year	2.48
Positively Drained Area (ha)		Betterment (%)	0
SAAR (mm)		QBar	
Soil Index	1	Q 1 year (I/s)	
SPR	0.10	Q 30 year (I/s)	
Region	1	Q 100 year (I/s)	
Growth Factor 1 year	0.85		

CAUSEWAY 😜	Coopers Consulting Engineers	File: 8352 SW N3.PFD Network: Storm Network 3 Patrick Walsh 26/02/2024	Page 3
	Pre-developmen	t Discharge Volume	
Posit	Site Makeup Green Greenfield Method FSR/F tively Drained Area (ha) Soil Index 1 SPR 0.10 CWI		100 0 360 0
	Node 304 Online	Hydro-Brake [®] Control	
Replaces Downstro Invert L Design D	evel (m) 86.062 epth (m) 1.800 Min Ou	Sump Available 🗸	e upstream storage I-5000-1800-5000
	Node 303 Depth/A	rea Storage Structure	
Base Inf Coefficient Side Inf Coefficient		actor 2.0 Invert rosity 1.00 Time to half emp	Level (m) 86.850 pty (mins) 128
(m)	(m²) (m²) (m) (ı	reaInf AreaDepthAream²)(m²)(m)(m²)5.00.00.8010.0	Inf Area (m²) 0.0
	Other	(defaults)	
Entry Loss (manhole Exit Loss (manhole			nded Losses x bod Risk (m) 0.300

Results for 1 year Critical Storm Duration. Lowest mass balance: 98.77%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	301	26	86.324	0.117	3.7	0.3490	0.0000	ОК
30 minute winter	302	26	86.323	0.167	7.1	0.5023	0.0000	ОК
30 minute winter	303	25	86.323	0.205	8.0	0.6162	0.0000	ОК
30 minute winter	304	25	86.323	0.261	8.0	0.7716	0.0000	SURCHARGED
15 minute summer	305	1	86.014	0.000	4.1	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute winter	301	1.000	302	3.4	0.286	0.010	1.0457	
30 minute winter	302	1.001	303	4.4	0.326	0.013	1.1279	
30 minute winter	303	1.002	304	4.4	0.200	0.013	2.2807	
30 minute winter	304	Hydro-Brake [®]	305	4.2				11.6

Results for 30 year Critical Storm Duration. Lowest mass balance: 98.77%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter	301	59	86.842	0.635	6.4	1.8956	0.0000	SURCHARGED
60 minute winter	302	58	86.843	0.687	9.3	2.0695	0.0000	SURCHARGED
60 minute winter	303	59	86.840	0.722	10.1	2.1670	0.0000	SURCHARGED
60 minute winter	304	58	86.840	0.778	9.5	2.2990	0.0000	SURCHARGED
15 minute summer	305	1	86.014	0.000	4.4	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute winter	301	1.000	302	3.1	0.234	0.009	5.7547	
60 minute winter	302	1.001	303	4.5	0.307	0.013	4.2837	
60 minute winter	303	1.002	304	4.9	0.215	0.014	6.3358	
60 minute winter	304	Hydro-Brake [®]	305	4.4				37.4

Results for 100 year +50% CC Critical Storm Duration. Lowest mass balance: 98.77%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
180 minute winter	301	148	87.904	1.697	6.2	5.0678	0.0000	FLOOD RISK
180 minute winter	302	148	87.904	1.748	11.7	5.2623	0.0000	FLOOD RISK
180 minute winter	303	148	87.904	1.786	17.5	33.3978	0.0000	FLOOD RISK
180 minute winter	304	144	87.907	1.845	7.3	5.4528	0.0000	FLOOD RISK
15 minute summer	305	1	86.014	0.000	4.4	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
180 minute winter	301	1.000	302	5.5	0.218	0.016	5.7547	
180 minute winter	302	1.001	303	10.7	0.289	0.031	4.2837	
180 minute winter	303	1.002	304	5.3	0.193	0.016	6.3358	
180 minute winter	304	Hydro-Brake [®]	305	5.1				103.5

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	17.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.300	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
401	0.061	5.00	79.205	1800	329339.606	366929.782	2.185
402	0.061	5.00	79.000	1800	329320.552	366939.989	2.034
403	0.060	5.00	78.900	2100	329296.824	366946.797	1.996
404			78.849	1200	329295.009	366955.348	1.996

<u>Links</u>

Name	US Node	DS Node	0	ks (mm) / n	US IL (m)		-		-	T of C (mins)	Rain (mm/hr)
1.000	401	402	21.616	0.600	77.020	76.966	0.054	400.0	750	5.26	50.0
1.001	402	403	24.685	0.600	76.966	76.904	0.062	400.0	750	5.55	50.0
1.002	403	404	8.742	0.600	76.904	76.853	0.051	171.4	225	5.70	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	Depth	Depth	Σ Area (ha)	Inflow	Depth	Pro Velocity (m/s)
1.000	1.393	615.3	8.3	1.435	1.284	0.061	0.0	60	0.503
1.001	1.393	615.3	16.5	1.284	1.246	0.122	0.0	83	0.619
1.002	0.995	39.6	24.7	1.771	1.771	0.182	0.0	129	1.048

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
1.000	21.616	400.0	750	Circular_Default Sewer Type	79.205	77.020	1.435	79.000	76.966	1.284
1.001	24.685	400.0	750	Circular_Default Sewer Type	79.000	76.966	1.284	78.900	76.904	1.246
1.002	8.742	171.4	225	Circular_Default Sewer Type	78.900	76.904	1.771	78.849	76.853	1.771

Link	US	Dia	Node	МН	DS	Dia	Node	МН
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	401	1800	Manhole	Adoptable	402	1800	Manhole	Adoptable
1.001	402	1800	Manhole	Adoptable	403	2100	Manhole	Adoptable
1.002	403	2100	Manhole	Adoptable	404	1200	Manhole	Adoptable

Coopers Consulting Engineers	File: 8352 SW N4.PFD	Page 2
	Network: Storm Network 4	
	Patrick Walsh	
	26/02/2024	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
401	329339.606	366929.782	79.205	2.185	1800	⁰ 7				
							0	1.000	77.020	750
402	329320.552	366939.989	79.000	2.034	1800		1	1.000	76.966	750
						•				
							0	1.001	76.966	750
403	329296.824	366946.797	78.900	1.996	2100	0	1	1.001	76.904	750
						U I	0	1.002	76.904	225
404	329295.009	366955.348	78.849	1.996	1200		1	1.002	76.853	225
						\bigcirc				

Simulation Settings

Rainfall Methodology	FSR	Skip Steady State	\checkmark						
FSR Region	England and Wales	Drain Down Time (mins)	240						
M5-60 (mm)	17.000	Additional Storage (m³/ha)	20.0						
Ratio-R	0.300	Check Discharge Rate(s)	\checkmark						
Summer CV	0.750	Check Discharge Volume	\checkmark						
Winter CV	0.840	100 year 360 minute (m ³)							
Analysis Speed	Normal								
	Storm Durations								

Return Period Climate Change Additional Area Additional Flow (years) (CC %) (A %) (Q %) 0 0 1 0 30 0 0 0 100 50 0 0

15 30 60 120 180 240 360 480 600 720 960 1440

Pre-development Discharge Rate

Site Makeup Greenfield Method	Greenfield IH124	Growth Factor 30 year Growth Factor 100 year	1.95 2.48
	10124	,	2.40
Positively Drained Area (ha)		Betterment (%)	0
SAAR (mm)		QBar	
Soil Index	1	Q 1 year (l/s)	
SPR	0.10	Q 30 year (l/s)	
Region	1	Q 100 year (l/s)	
Growth Factor 1 year	0.85		

CAUSEWAY 🛟	Coopers Consulting Engineers	File: 8352 SW N4.PFD Network: Storm Network 4 Patrick Walsh 26/02/2024	Page 3
	Pre-development	Discharge Volume	
Pos	Site Makeup Greenf Greenfield Method FSR/FE sitively Drained Area (ha) Soil Index 1 SPR 0.10 CWI		100 0 360 0
	Node 403 Online H	ydro-Brake [®] Control	
F Replaces Downsti Invert Design Design	upstream storage -3000-2100-3000		
	Node 403 Depth/Ar	ea Storage Structure	
Base Inf Coefficier Side Inf Coefficier		octor 2.0 Invert posity 1.00 Time to half emp	Level (m) 76.904 oty (mins)
Depth (m) 0.000	Area Inf Area Depth Area (m²) (m²) (m) (m) 50.0 0.0 1.200 50	²) (m ²) (m) (m ²)	Inf Area (m²) 0.0
	<u>Other (d</u>	defaults)	
Entry Loss (manhol Exit Loss (manhol			nded Losses x bod Risk (m) 0.300

Results for 1 year Critical Storm Duration. Lowest mass balance: 99.38%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
120 minute winter	401	92	77.093	0.073	2.5	0.2257	0.0000	ОК
120 minute winter	402	92	77.093	0.127	5.0	0.3986	0.0000	ОК
120 minute winter	403	92	77.093	0.189	6.5	10.2072	0.0000	ОК
15 minute summer	404	1	76.853	0.000	1.8	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
120 minute winter	401	1.000	402	2.5	0.262	0.004	0.7655	
120 minute winter	402	1.001	403	4.2	0.409	0.007	1.6764	
120 minute winter	403	Hydro-Brake®	404	2.1				20.8

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
240 minute winter	401	196	77.394	0.374	3.7	1.1620	0.0000	ОК
240 minute winter	402	196	77.394	0.428	6.5	1.3471	0.0000	ОК
240 minute winter	403	196	77.394	0.490	8.3	26.5143	0.0000	SURCHARGED
15 minute summer	404	1	76.853	0.000	2.1	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
240 minute winter	401	1.000	402	2.8	0.230	0.004	5.1837	
240 minute winter	402	1.001	403	4.7	0.417	0.008	6.9728	
240 minute winter	403	Hydro-Brake®	404	2.1				53.5

Results for 100 year +50% CC Critical Storm Duration. Lowest mass balance: 99.38%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	401	336	78.636	1.616	5.5	5.0132	0.0000	SURCHARGED
360 minute winter	402	336	78.636	1.670	9.3	5.2509	0.0000	SURCHARGED
360 minute winter	403	328	78.637	1.733	12.5	67.0707	0.0000	FLOOD RISK
15 minute summer	404	1	76.853	0.000	2.1	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
360 minute winter	401	1.000	402	3.9	0.207	0.006	9.5136	
360 minute winter	402	1.001	403	7.9	0.450	0.013	10.8644	
360 minute winter	403	Hydro-Brake [®]	404	2.8				74.0

CAUSEWAY 🛟	Coopers Consulting Enginee	rs File: 8352 SW N5.PFD Network: Storm Network 5 Patrick Walsh 26/02/2024	Page 1
	De	ign Settings	
Rainfall Methodo Return Period (ye Additional Flow FSR Re M5-60 (Rai Time of Entry (n	ears) 100 (%) 0 gion England and Wales mm) 17.000 cio-R 0.300 CV 0.750	Maximum Time of Concentration Maximum Rainfall (Minimum Velocit Connectio Minimum Backdrop Hei Preferred Cover De Include Intermediate Enforce best practice desig	mm/hr) 50.0 ty (m/s) 1.00 on Type Level Soffits ght (m) 0.200 pth (m) 1.200 Ground √
Name		<u>Nodes</u>	- Death
Name	Area T of E Cover D (ha) (mins) Level (m)	iameter Easting Northir (mm) (m) (m)	ng Depth (m)
501 502	0.032 5.00 79.400 79.227	1800329270.837366924.01200329277.742366920.4	
		Links	
Name US D Node No 1.000 501 502 Name	de (m) n (2. 7.784 0.600 77 Vel Cap Flow US (m/s) (l/s) (l/s) Depth (m)	n) (m) (m) (1:X) (f 062 77.016 0.046 170.0 DS ΣArea ΣAdd Pro Depth (ha) Inflow Dep (m) (l/s) (mr	th Velocity n) (m/s)
1.000	1.000 39.7 4.3 2.113 <u>Pipe</u>	1.986 0.032 0.0	50 0.657
(m) (1:X) (n	Dia Link nm) Type 225 Circular_Default Sewer	US CL US IL US Dep (m) (m) (m) Type 79.400 77.062 2.11	(m) (m) (m)
Ν		MH DS Dia Node Type Node (mm) Type optable 502 1200 Manhol	MH Type e Adoptable
	Man	nole Schedule	
Node Easting (m)	-	epth Dia Connections m) (mm)	Link IL Dia (m) (mm)
501 329270.83	7 366924.013 79.400 2	338 1800	4 000 77 000 005
502 329277.74	2 366920.419 79.227 2		1.000 77.062 225 1.000 77.016 225
		1	

CAUSEWAY 🛟	Coopers Consulting Enginee	rs File: 8352 SW N5.PFD Network: Storm Network 5 Patrick Walsh 26/02/2024	Page 2
	Simul	ation Settings	
	Methodology FSR FSR Region England and M5-60 (mm) 17.000 Ratio-R 0.300 Summer CV 0.750 Winter CV 0.840 nalysis Speed Normal	Additional Storage (m³/ha Check Discharge Rate(s Check Discharge Volume 100 year 360 minute (m³	a) 240) 20.0) √ e √
15 30 60		m Durations 360 480 600 720	960 1440
Re	eturn Period Climate Chang (years) (CC %) 1 30 100	ge Additional Area Additional Flo (A %) (Q %) 0 0 0 0 50 0	w 0 0
			0
	Pre-develop	ment Discharge Rate	
Positi	Site Makeup Gre Greenfield Method IH1 vely Drained Area (ha) SAAR (mm) Soil Index 1 SPR 0.10 Region 1 Growth Factor 1 year 0.85	Betterment (%) QBar Q 1 year (I/s) Q 30 year (I/s) Q 100 year (I/s)	1.95 2.48 0
	Pre-developm	ent Discharge Volume	
Posit		eenfield Return Period (years) R/FEH Climate Change (%) Storm Duration (mins) Betterment (%) 0 PR Runoff Volume (m ³)	100 0 360 0
	Node 501 Onlin	<u>e Hydro-Brake[®] Control</u>	
Replaces Downstre Invert L Design D	.evel (m) 77.062 epth (m) 1.500 Min	Sump Available 🗸	upstream storage -2000-1500-2000
	Oth	<u>er (defaults)</u>	
Entry Loss (manhole Exit Loss (manhole			nded Losses x ood Risk (m) 0.300

Results for 1 year Critical Storm Duration. Lowest mass balance: 98.26%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	501	14	77.319	0.257	3.5	0.7232	0.0000	SURCHARGED
15 minute summer	502	1	77.016	0.000	1.6	0.0000	0.0000	ОК
	k Event am Dep		IS ode	Link	DS Node	Outflow (I/s)	Dischar Vol (m	
15 min	ute wint	er 50	1 Hyd	ro-Brake®	502	1.6	1	6

Results for 30 year Critical Storm Duration. Lowest mass balance: 98.26%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	501	26	78.153	1.091	6.8	3.0756	0.0000	SURCHARGED
15 minute summer	502	1	77.016	0.000	1.6	0.0000	0.0000	ОК
	k Event am Dep	U th) No	-	Link	DS Node	Outflow (I/s)	Dischar Vol (m ⁱ	
30 min	ute wint	er 501	L Hydr	o-Brake®	502	1.7	5	.3

Results for 100 year +50% CC Critical Storm Duration. Lowest mass balance: 98.26%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflo (I/s)			Status
60 minute winter	501	39	79.400	2.338	9.	.4 6.588	35 1.4355	FLOOD
15 minute summer	502	1	77.016	0.000	2.	.2 0.000	0.0000 00	ОК
Link Ev (Upstream	Depth)	US Node	Link	-	DS Node	Outflow (I/s)	Discharge Vol (m ³)	
60 minute	winter	501	Hydro-B	rake®	502	2.5	12.5	

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	17.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.300	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	х

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
601	0.046	5.00	78.764	1500	329289.326	366950.491	2.038
602	0.046	5.00	78.841	1500	329277.007	366956.553	2.149
603	0.046	5.00	78.965	1500	329263.657	366967.272	2.316
604	0.046	5.00	78.806	1500	329245.352	366976.846	2.209
605	0.046	5.00	78.768	1500	329210.826	366961.590	2.161
606	0.046	5.00	78.525	1500	329224.075	366984.799	1.985
607	0.046	5.00	78.430	2100	329217.401	366987.968	1.908
608	0.000		77.235	1200	329214.598	366994.629	0.756

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	601	602	13.730	0.600	76.726	76.692	0.034	400.0	750	5.16	50.0
1.001	602	603	17.121	0.600	76.692	76.649	0.043	400.0	750	5.37	50.0
1.002	603	604	20.658	0.600	76.649	76.597	0.052	400.0	750	5.62	50.0
1.003	604	606	22.715	0.600	76.597	76.540	0.057	400.0	750	5.89	50.0
2.000	605	606	26.724	0.600	76.607	76.540	0.067	400.0	750	5.32	50.0
1.004	606	607	7.388	0.600	76.540	76.522	0.018	400.0	750	5.98	50.0
1.005	607	608	7.227	0.600	76.522	76.479	0.043	168.1	225	6.10	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	1.393	615.3	6.2	1.288	1.399	0.046	0.0	52	0.463
1.001	1.393	615.3	12.5	1.399	1.566	0.092	0.0	73	0.571
1.002	1.393	615.3	18.7	1.566	1.459	0.138	0.0	88	0.642
1.003	1.393	615.3	24.9	1.459	1.235	0.184	0.0	101	0.699
2.000	1.393	615.3	6.2	1.411	1.235	0.046	0.0	52	0.463
1.004	1.393	615.3	37.4	1.235	1.158	0.276	0.0	123	0.785
1.005	1.005	40.0	43.6	1.683	0.531	0.322	0.0	225	1.024

CAU	SEV	AY (oopers Co	nsulting Eng		File: 8352 Network: Patrick W 26/02/20	Storm Ne alsh		Page 2		
					<u> </u>	Pipeline S	<u>chedule</u>					
Link	Length (m)	Slope (1:X)	Dia (mm)		Link Type		US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	13.730	400.0	750	Circular	Default Sev	wer Type	78.764	76.726	1.288	78.841	76.692	1.399
1.001	17.121	400.0	750	Circular	_ Default Sev	wer Type	78.841	76.692	1.399	78.965	76.649	1.566
1.002	20.658	400.0	750	Circular	Default Sev	wer Type	78.965	76.649	1.566	78.806	76.597	1.459
1.003	22.715	400.0	750	Circular	Default Sev	wer Type	78.806	76.597	1.459	78.525	76.540	1.23
2.000	26.724	400.0	750	Circular	_Default Sev	wer Type	78.768	76.607	1.411	78.525	76.540	1.235
1.004	7.388	400.0	750	Circular	_Default Sev	wer Type	78.525	76.540	1.235	78.430	76.522	1.158
1.005	7.227	168.1	225	Circular	_Default Sev	wer Type	78.430	76.522	1.683	77.235	76.479	0.531
		Link		Dia	Nada		DC	Dia	Nada			

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	601	1500	Manhole	Adoptable	602	1500	Manhole	Adoptable
1.001	602	1500	Manhole	Adoptable	603	1500	Manhole	Adoptable
1.002	603	1500	Manhole	Adoptable	604	1500	Manhole	Adoptable
1.003	604	1500	Manhole	Adoptable	606	1500	Manhole	Adoptable
2.000	605	1500	Manhole	Adoptable	606	1500	Manhole	Adoptable
1.004	606	1500	Manhole	Adoptable	607	2100	Manhole	Adoptable
1.005	607	2100	Manhole	Adoptable	608	1200	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
601	329289.326	366950.491	78.764	2.038	1500	0 K				
							0	1.000	76.726	750
602	329277.007	366956.553	78.841	2.149	1500	° ~	1	1.000	76.692	750
							0	1.001	76.692	750
603	329263.657	366967.272	78.965	2.316	1500	° F Q	1	1.001	76.649	750
						1	0	1.002	76.649	750
604	329245.352	366976.846	78.806	2.209	1500	0 < Q	1	1.002	76.597	750
							0	1.003	76.597	750
605	329210.826	366961.590	78.768	2.161	1500	Š				
							0	2.000	76.607	750
606	329224.075	366984.799	78.525	1.985	1500		1	2.000	76.540	750
						0	2	1.003	76.540	750
						1′	0	1.004	76.540	750
607	329217.401	366987.968	78.430	1.908	2100	°,	1	1.004	76.522	750
						•	0	1.005	76.522	225

CAUSEWAY 🛟				Networ Patrick 26/02/2	Walsh	Network 6		age 3	
		Δ	Manhole S	chedule	2				
Node Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Conn	ections	Link	IL (m)	Dia (mm)
608 329214.598	366994.629	77.235	0.756	1200	G		1.005	76.479	225
		<u>s</u>	imulation	Setting	<u>s</u>				
	Methodology FSR Region M5-60 (mm) Ratio-R Summer CV Winter CV Analysis Speed	FSR England 17.000 0.300 0.750 0.840 Normal	and Wale	A	Drain Do dditional Check D Check Di	Skip Steady S own Time (r Storage (m Discharge Ra Scharge Vol 360 minute	nins) ³∕ha) te(s) ume	√ 240 20.0 √	
	0 120		Storm Du		400	COO 7		000	1 4 4 0
15 30 6	0 120 2	180 2	240 3	60	480	600 72	20	960	1440
R		Climate C	-	ddition		Additiona			
	(years) 1	(CC %	•) 0	(A 9	%) 0	(Q %) 0		
	30		0		0		0		
	100		50		0		0		
		Pre-dev	elopment	Dischar	ge Rate				
		Aakaun	Croonfiel	d	Crowth [Factor 20 vo	or 1 (זר	
	Greenfield N	1akeup Aethod	Greenfiel IH124			Factor 30 ye actor 100 ye			
Posit	ively Drained Ar					etterment (
	-	R (mm)				QB	-		
	Soi	il Index	1			Q 1 year (l,	′s)		
			0.10			Q 30 year (l			
		Region	1		Q	100 year (l,	's)		
	Growth Factor	1 year	0.85						
	<u> </u>	<u>Pre-devel</u>	opment D	ischarg	e Volume	2			
Posi	Greenfield I itively Drained A		Greenfie FSR/FEH 1 0.10		Climat Storm Du Be	Period (year te Change (% uration (min etterment (% F f Volume (m	6) 0 s) 36 6) 0 PR		
	Nc	ode 607 C	Online Hyd	<u>lro</u> -Brak	<u>e®</u> Contr	rol			
-								otroa'	0 /200
Replaces Downstr Invert Design D	Elap Valve x ream Link √ Level (m) 76.5 Depth (m) 1.50 Flow (I/s) 5.0	0		Sump Av roduct N et Diame	Number eter (m)	 (HE) Minir ✓ CTL-SHE-0 0.150 1200 	-		-
2 001811		1			·····/				

Node 605 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Side Inf Coefficient (m/hr)0.00000Porosity1.00						Time to h		Level (m) ty (mins)	76.607
Depth (m) 0.000	Area (m²) 100.0	Inf Area (m ²) 0.0	Depth (m) 0.800	Area (m²) 100.0	Inf Area (m²) 0.0	Depth (m) 0.801	Area (m²) 0.0	Inf Area (m²) 0.0	

Other (defaults)

Entry Loss (manhole)	0.250	Entry Loss (junction)	0.000	Apply Recommended Losses	х
Exit Loss (manhole)	0.250	Exit Loss (junction)	0.000	Flood Risk (m)	0.300

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	601	10	76.773	0.047	5.0	0.1044	0.0000	OK
15 minute winter	602	11	76.757	0.065	9.9	0.1437	0.0000	ОК
15 minute winter	603	12	76.729	0.080	14.4	0.1720	0.0000	OK
15 minute winter	604	12	76.725	0.128	19.2	0.2791	0.0000	ОК
60 minute winter	605	50	76.720	0.113	13.7	11.5369	0.0000	OK
15 minute winter	606	12	76.723	0.183	21.8	0.4077	0.0000	ОК
15 minute winter	607	12	76.723	0.201	7.5	0.7927	0.0000	ОК
15 minute summer	608	1	76.479	0.000	4.4	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	601	1.000	602	4.9	0.330	0.008	0.2040	
15 minute winter	602	1.001	603	9.7	0.454	0.016	0.3667	
15 minute winter	603	1.002	604	14.2	0.503	0.023	0.7687	
15 minute winter	604	1.003	606	17.1	0.382	0.028	1.5043	
60 minute winter	605	2.000	606	-10.9	-0.303	-0.018	1.6321	
15 minute winter	606	1.004	607	4.5	0.189	0.007	0.6556	
15 minute winter	607	Hydro-Brake [®]	608	4.4				15.6

Results for 30 year Critical Storm Duration. Lowest mass balance: 96.15%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
180 minute winter	601	144	76.955	0.229	3.4	0.5072	0.0000	OK
180 minute winter	602	144	76.955	0.263	6.2	0.5764	0.0000	ОК
180 minute winter	603	144	76.955	0.306	8.6	0.6613	0.0000	OK
180 minute winter	604	144	76.955	0.358	10.6	0.7810	0.0000	ОК
180 minute winter	605	144	76.955	0.348	11.5	35.5298	0.0000	ОК
180 minute winter	606	144	76.955	0.415	12.3	0.9251	0.0000	ОК
180 minute winter	607	144	76.955	0.433	5.5	1.7072	0.0000	SURCHARGED
15 minute summer	608	1	76.479	0.000	4.7	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
180 minute winter	601	1.000	602	3.0	0.279	0.005	1.7209	
180 minute winter	602	1.001	603	5.5	0.362	0.009	2.6176	
180 minute winter	603	1.002	604	7.3	0.330	0.012	3.8792	
180 minute winter	604	1.003	606	8.9	0.249	0.015	5.1877	
180 minute winter	605	2.000	606	-8.1	0.188	-0.013	6.0041	
180 minute winter	606	1.004	607	4.7	0.164	0.008	1.8939	
180 minute winter	607	Hydro-Brake [®]	608	4.9				101.1

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	601	288	78.299	1.573	6.0	3.4894	0.0000	SURCHARGED
360 minute winter	602	288	78.297	1.605	7.3	3.5223	0.0000	SURCHARGED
360 minute winter	603	288	78.297	1.648	9.7	3.5659	0.0000	SURCHARGED
360 minute winter	604	288	78.292	1.695	11.8	3.7018	0.0000	SURCHARGED
360 minute winter	605	288	78.294	1.687	13.6	83.7500	0.0000	SURCHARGED
360 minute winter	606	312	78.343	1.803	13.8	4.0223	0.0000	FLOOD RISK
360 minute winter	607	288	78.294	1.772	64.9	6.9904	0.0000	FLOOD RISK
15 minute summer	608	1	76.479	0.000	4.9	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
360 minute winter	601	1.000	602	3.6	0.247	0.006	6.0429	
360 minute winter	602	1.001	603	8.0	0.307	0.013	7.5353	
360 minute winter	603	1.002	604	7.7	0.304	0.013	9.0920	
360 minute winter	604	1.003	606	9.7	0.272	0.016	9.9973	
360 minute winter	605	2.000	606	-9.8	-0.068	-0.016	11.7618	
360 minute winter	606	1.004	607	64.9	0.148	0.105	3.2516	
360 minute winter	607	Hydro-Brake [®]	608	5.4				157.8