

PHASE II GEOENVIRONMENTAL SITE ASSESSMENT

Proposed Residential Development Well Street Buckley Wales CH7 2PQ

Prepared for:

Alan Johnston Partnership Ltd

Report Ref: 14-278-R2

Date Issued: October 2020

E3P

Taylor Road Trafford Park Urmston M41 7JQ

+ 44 (0) 161 707 9612 https://e3p.co.uk/

Registered in England CRN: 807255262

QUALITY ASSURANCE

PROJECT NUMBER	14-278		
VERSION	Version 1		
REMARKS	Draft for Comment		
DATE	October 2020		
PREPARED BY	V Wilkinson		
QUALIFICATIONS	MESci (Hons), FGS		
SIGNATURE	Mille		
CHECKED BY	R Walker		
QUALIFICATIONS	BSc(Hons), FGS, AIEMA, AMICE, MIEnvSc, CEnv		
SIGNATURE	Selle Selle		
AUTHORISED BY	S Cox		
QUALIFICATIONS	BSc(Hons), FGS, PIEMA, , MIEnvSc, CEnv		
SIGNATURE	Eox		

EXECUTIVE SUMMARY

Site Address	Land at Well Street, Buckley, Wales, CH7 2PQ			
Grid Reference	E326750, N363630			
Site Area	5.31 Hectares			
Current Site Use	The site is currently utilised as agricultural land with evidence of silage production predominantly. The site is split north west-south east by a hedgerow. The site is accessed from Well Street present along the south eastern			
	boundaries are lined w	rith hedgerow. The north eastern and north western ith fencing backing onto residential gardens. The south hedgerow and farmhouse beyond.		
Proposed Development	comprising 154 units detached and terrac	the site will be developed for residential end use (through a mixture of apartment, detached, semi- ed property) with associated estate roads, utility gardens and areas of landscaping.		
	A proposed developm 278-002).	ent plan has been included as an attachment (Ref 14-		
	Drift Geology	Glacial Till (Devensian) – Diamicton, Clay.		
	Bedrock Geology	Gwepsyr Sandstone (East) Pennine Lower Coal Measures (mudstone, siltstones sandstone) (West) Bowland Shale Formation (mudstone – South)		
	Faults	An inferred fault is present bisecting the site north- south due to the change in bedrock strata through the site.		
Environmental Setting	Hydrogeology	Secondary A Aquifer (Bedrock) Secondary Undifferentiated (Drift)		
	Hydrology	A large pond is present 31 m south and a number of tributaries of the River Alyn are present in the immediate (30 m) surrounding area. The River Alyn is noted at 987m south of the site.		
	Flood Risk	Low lying areas of the site are considered to be at risk from surface water flooding however, no risk of fluvial flooding has been identified in data searches.		
Natural Landform and Geomorphology	The site is located between the Dee estuary and the northern wels mountains as such there is undulation throughout the site evident of glaci retreat. The site in its current state is likely to be the natural landform.			
Site History	A review of the historical mapping indicated the site has always comprised two undeveloped fields, split in half by a field boundary.			
	On the 1872 mapping, a pond in noted on the northern boundary however, this was infilled by 1899.			
	A hedgerow is noted to be present between 1982 and 1987 cutting the southern field through the centre. No changes have occurred since.			

Pertinent points from the previously completed E3P Ltd Phase 1 Desk Study are as follows:

- Site is underlain by glacial till (clay) and three bedrock strata through its length (sandstone, mudstone and siltstone) with secondary undifferentiated aguifer in the bedrock.
- Low lying areas of the site are at risk of surface flooding from rivers.
- No historic structures have been present on site.
- The south western area of the site is in a 5-10% Radon area and will required mitigation.
- Site is reported within a Coal authority areas but not within a development high risk.
- Soakaway drainage is unlikely to be suitable given cohesive clay stratum.
- In the absence of anthropogenic processes at the site there is a low likelihood of significant contamination and therefore a low risk to human health.
- Similarly, in the absence of significant contamination, cohesive strata, and the presence of an undifferentiated aquifer there is considered a low risk to controlled waters.
- Infilled ponds/hedgerows are a likely source of Made Ground.
- Made Ground and localised areas of peat and possibility of shallow mine workings are potential sources of ground gas at the site.

E3P has also been provided with a Smith Grant Phase 1 and 2 Contaminated Land and Geotechnical Assessment completed on behalf of Flintshire County Council September 2017 (Ref: R2458-R01-v1). The pertinent points are listed below:

- Site comprises a vacant parcel of open land with two fields separated by a hedgerow.
- Historical mapping confirmed the land has remained undeveloped through its history.
- 2 12 trial pits completed across the site.
- Ground conditions identified across the site were consistent and comprised a surface cover of topsoil overlying a firm to stiff glacial clay. One location at the southeast boundary identified soft clay with peat.
- Groundwater was not encountered other than one trial pit in the south east that was flooded.
- A human health assessment confirmed the presence of lead in the topsoil stratum.

Previous Reports

Previous Reports Continued	 Ground gas monitoring did not identify any elevated concentrations of carbon dioxide or methane. The report recommended shallow traditional spread foundations across the site other than where groundwater and peat were identified to the south east boundary of the site. It was recommended this material is excavated and replaced with an engineered fill.
Utility Locations	A formal GPR survey has not been completed to date. However, a review of national utility plans show overhead high voltage cables to the north west of the site and along Well Street to the south east. Further underground HV cables exist along the north eastern boundary.
Landfill Sites and Ground Gases	No currently active or historic landfills are identified within 250 m of the site. Historical pond is noted to the north of the site, since infilled. Historic hedgerows are noted in the south since removed. The Made Ground infill materials used in each location could be a source of ground gas generation. One area of peat was noted within the previously completed site investigation that could also present a source of ground gas generation.
Radon	The south western area of the site is within an intermediate probability radon area where 5-10% of homes will be affected. The remainder of the site is considered to be in a lower probability area where 1% of homes will be affected. Basic radon protective measures may be necessary within the site.
Coal Mining/Land Stability	The site is reported to be within an area which may be affected by coal mining however it is not within a Development High Risk Area as set out by the Coal Authority. Previous investigation identifies two seams potentially underlying the site. Shallow workings have been identified in the area surrounding the site.
Brine Workings	The proposed development is not located within the Cheshire Brine Compensation District; therefore, is not affected by brine workings.
Hazardous Installations	No hazardous installations that could potentially prejudice the proposed construction of highly sensitive residential dwellings have been identified within influencing distance of the subject site.

SITE INVESTIGATION

Ground Investigation Works	E3P has completed an intrusive ground investigation comprising mechanically excavated trial pits, window sample boreholes, rotary open holes, BRE365 soakaway tests and dynamic cone penetrometers and environmental monitoring installations.
Ground Conditions	MADE GROUND – 0.00 m bgl to 0.50 m bgl Made Ground has been identified in two discrete areas of the site (TP121-0.50m and TP123-0.30m) as reworked topsoil with clay pipe fragments and as reworked natural clay with fragments of a land drain present. Not considered significant sources of potential contaminants and are likely due to agricultural practices at the site. The full depth of Made Ground has been proven in both instances.

TOPSOIL - 0.00m bgl to 0.30m bgl

Topsoil has been identified in all exploratory locations with the exception of the two Made Ground areas. Topsoil is encountered as a slightly gravelly sandy clay with frequent rootlets and gravel of fine to coarse subangular to subrounded mudstone. Topsoil has been identified to depths between ground level and 0.30m bgl.

DRIFT - 0.20- m bgl to 8.10 m bgl

Natural drift deposits have been identified within all exploratory locations. Predominantly throughout the site a gravelly sandy CLAY with gravel of mudstone and sandstone is identified. Clay stratum has been noted as highly friable and so hand shear vane tests could not be completed in some cases.

Occasionally a grey gravel of mudstone is identified at the base of excavations (TP116, TP117, TP121, WS105, WS106 and WS106A) circa 2.00-3.00m bgl and within RBH103 between 4.00m and 7.60m bgl. Mudstone bedrock is noted through the site and this could therefore be representative of a weathered layer of bedrock stratum.

Ground Conditions

In rare locations (TP120, 124, WS110, RBH102 and RBH105) a clayey sand is identified at similar depths.

Within the previous site investigation a 'highly localised' area of peat was identified to the south west of the site. E3P advanced a number of locations in this area that has not identified peat.

SOLID - 3.30m bgl to 30.00m bgl

The solid bedrock geology was identified throughout the site in rotary positions at depths between 3.30m and 8.10m bgl. Bedrock was identified as interbedded grey siltstone, sandstone and mudstone with occasional marl. Bedrock strata was encountered to a maximum proven depth of 30.00m bgl.

GROUNDWATER – 2.00m bgl to 4.00m bgl

Groundwater was encountered at six locations through the site as perched water within cohesive strata and above bedrock strata at depths between 2.00m and 4.00m bgl.

CONTAMINATED LAND ASSESSMENT

A Tier I human health risk assessment has been undertaken using the chemical analysis results of the soils and comparing to the relevant Tier I criteria. This assessment has identified the presence of elevated lead, within the topsoil at the site. These findings are consistent with those of the previously completed smith grant report.

Human Health

Lead is identified at 0.10m bgl in TP123 and TP111. The concentrations have primary exposure pathways related to dermal contact and ingestion, soil ingestion and consumption of homegrown produce. These exceedances can be mitigated by the installation of a chemically suitable cover system within all proposed garden areas. Alternatively, these can be excavated and delineated through chemical validation during remedial works and placed in a future low sensitivity area within the proposed development, after which cover systems will no longer be required.

Human Health Continued	Asbestos, petroleum hydrocarbons and poly aromatic hydrocarbons have not been identified within any of the samples submitted for assessment Chemical analysis of the natural drift deposits have identified these soils to be acceptable for use as subsoil within the proposed garden areas; however, further chemical validation samples will be required to confirm this. In addition, topsoil at the site (with the exception of the two locations noted above) will be suitable for reuse.
Controlled Waters	A Teir 1 controlled waters risk assessment has been completed for the site utilising leachate analysis of soils and groundwater samples obtained during and after the site works. Three locations within 2 discrete areas of the site confirm the presence of Zinc and one location (WS111) identifies the presence of TPH C5-C6. All three groundwater samples obtained identify Methylphenol which is considered to be a potential vapour risk. However, and in the context of controlled waters, the risk is considered low in the absence of a viable receptor, significant source and the presence of low permeability cohesive stratum.
Ground Gas	Current assessment based on initial monitoring visit confirms one area of the site (WS108) identifies levels of CO2 that would require CS2/Amber 1 classification. Given the absence of a significant source in this area it is likely that this is the degretation/decomposition of carbonate minerals within the natural stratum. The full phase of ground gas monitoring should be completed to inform the full and detailed assessment and therefore level of risk. Currently an allowance for Cs2/amber 1 mitigation measures should be retained.
Potable Water Infrastructure	This will need to be confirmed following the completion of a UKWIR risk assessment. Post-remediation and enabling works ground conditions may be different from those identified during this site investigation. It is most likely that the site will be suitable for PE pipeline.

GEOTECHNICAL ASSESSMENT

Underground Obstructions	Made Ground has not been identified to contain obstructions and given the sites history anthropogenic obstructions are not expected. In addition, natural boulders and obstructions have not been encountered during the site investigations completed to date.
Allowable Bearing Pressure	The underlying natural clay drift deposits have been assessed as being very stiff, high strength with a net allowable bearing pressure (ABP) in the order of 150 kN/m² at circa 1 m bgl increasing to 150–200 kN/m² at circa 2 m bgl. Granular drift deposits have been assessed as dense with a net ABP in excess of 400kN/m² at circa 2.50m bgl.
Foundation Options	Due to the existing large variances in the site topography, a phase of cut-and-fill enabling works will be required in order to create a proposed development platform suitable for a residential development. This will generally comprise stepping levels through the site as the road to the south and property to the north currently tie into the site at the boundaries.

	Therefore, upon completion of these enabling works, it is likely that the most cost-effective option for the majority of the site would be to construct plots utilising a shallow strip, spread foundation or mass trench fill.
Foundation Options Continued	Peat was not encountered during the E3P site investigation however, where this is recorded in previous investigation E3P identified a soft clay. As such, foundations may require deepening to a structural engineering design to tolerate risks associated with the compressibility of the materials and to tolerate total and differential settlement across the plot footprint.
	Subject to finished levels it is expected that <5% of the site may require a deep mass trench or driven pile foundation solution.
	Foundation depths within the conjectured influence of former, existing or proposed trees will need to be deepened to ensure that structural loading bears within the underlying target founding stratum, which cannot be subject to volumetric instability associated with fluctuation in moisture content.
	Ground-bearing floor slabs are unlikely to be viable given the presence of shallow cohesive soils.
Building Floor Slabs	Where a ground bearing slab is a preferred construction method it will be subject to an engineer's design to tolerate any total and differential settlement and heave within the substratum.
Heave Precautions	Given that the underlying clay is of low volume change potential, heave precautions will not be required to the internal face of a foundation less than 1.5 m in depth.
Treave Freductions	Heave precautions will be required to the underside of floor slabs (where there is no 200 mm void) and pile ground beams are required within the modelled influencing distance of trees.
Soakaway Drainage	The underlying soils are cohesive in nature and have not demonstrated significant permeability potential to support a sustainable drainage solution.
Journal Diamage	The ultimate design will be subject to a specialist design and the requirement of the future proposed development.
Sulphate Assessment	Assessment of sulphate and pH levels at the site confirms that concrete classification will in all likelihood be DS1 AC1s.
CBR Design %	Natural clay soils will provide a CBR in the order of 3–5% during drier climatic periods; however, if water is allowed to shed onto the formation, the CBR will reduce to < 2%, which will require specialist engineering of the subgrade.
Cut/Fill	Development levels unknown at this time; however, cut-and-fill works are likely to be required to prepare the development platform.
Civil Engineering Excavations	The E3P Intrusive Ground Investigation has identified the presence of weathered/competent bedrock at depths between 3.30m and 8.10m. Depending on foundation/drainage levels the presence may impede the excavation of materials to form sewerage and drainage infrastructure and foundations.
Waste Characterisation	Any material that is to be disposed off-site should undergo assessment using Technical Guidance WM3: Waste Classification – Guidance on the classification and assessment of waste.

Within the Smith Grant report reference is made to a previously completed Coal Mining Risk Assessment carried out by NKC Geotech Itd (Ref: 1720, dated August 2017) that recommended an intrusive investigation to determine the geology and prove the depth or absence of shallow mine workings in the half yard and premier coal seams.

Following a review of the Coal Authority interactive viewer by E3P, it was determined that a potentially unmarked seam of coal continued from the north dissected the site and in the presence of mine shafts and a colliery historically to the east of the site following the conjectured dip of the seam there is a potential risk of workings beneath the site. A review of the 1:10,000 geological mapping also confirmed the potential presence of a seam of coal noted at the 'premier' coal seam of 1.00-1.50m thickness.

Coal Mining

E3P has, in accordance with best practice as detailed within Ciria 32, carried out a series of boreholes through the site specifically positioned to intersect any such feature at shallow depth (<30m) beneath the site. Within six locations advanced, no evidence of workings or intact seams of coal have been encountered. As such any worked seams present would be at a significant depth below the site and sufficient rock overburden would therefore be achieved.

As evidence of worked seams of coal have not been identified beneath the site, and there is sufficient rock over burden (10x the suspected seam thickness) present to mitigate any collapse above any much deeper workings at depths in excess of 30m bgl, there is considered to be a low risk to the proposed future development.

RECOMMENDATIONS

Based on the findings of the geoenvironmental site assessment, the following additional works are recommended to be completed in due course:

- Plot-specific foundation schedule (upon receipt of the final development levels);
- Materials management plan;
- Geotechnical earthworks strategy (infrastructure);
- Remediation and enabling works strategy; and
- Full three-dimensional earthworks cut/fill model

Table of Contents

E)	(ECUTIV	E SUMMARY	2
1	INTR	ODUCTION	12
••	1.1.	Background	
	1.2.	Proposed Development	
	1.3.	Objectives	
	1.4.	Limitations	
	1.5.	Confidentiality	
	1.5.	Confidentiality	14
2.	GRO	UND INVESTIGATION	15
	2.1.	Phase I Desk Study Summary	15
	2.2.	General Overview	
	2.3.	In-Situ Standard Penetration Testing (SPT)	18
	2.4.	In-Situ California Bearing Ratio (CBR)	18
	2.5.	Permeability Tests	18
	2.6.	Laboratory Analysis	18
2	CDO	UND AND GROUNDWATER CONDITIONS	10
ა.	3.1.	Summary of Ground Conditions	
	3.1.	Made Ground	
	3.3.	Topsoil	
	3.4.	Drift Deposits	
	3.4.	Solid Geology	
	3.6.	Groundwater	
	3.7.	Visual and Olfactory Evidence of Contamination	
	3.8.	Soil Consistency	
	3.9.	Side Stability and Ease of Excavation	
	3.10.	consolidation	
	3.10.	Soil Infiltration	
	3.11.	Soil Plasticity	
	3.12.	California Bearing Ratio	
	3.14.	pH and Sulphate	
	3.14.	Ground Gas	
	3.16.	Investigation Rationale	
	3.10.	Monitoring Methodology	
	5.17.	Worldoning Wethodology	
		I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT	
	4.1.	Human Health Risk Assessment	33
	4.2.	Controlled Waters Risk Assessment	36
	4.3.	Ground Gas	
	4.3.1		41
	4.3.2		41
	4.3.3	. Gas Flow	41
	4.3.4	Gas Concentrations	41
	4.3.5	. Gas Assessment	41
	4.4.	Residential Building Gas Risk Mitigation	43
	4.5.	Potable water supply	47
	4.6.	Conceptual Site Model	48
5.	GEO.	FECHNICAL ASSESSMENT	E1
J.	5.1.	Proposed Development	
	5.1. 5.2.	Summary of Ground Conditions	
	5.2. 5.3.		
	5.3. 5.4.	Site Preparation Foundation Conditions and Assessment of Potential Bearing Capacities	
		Ground Floor Slabs	
	J. U.	OTOGING 1 1001 OIGDO	

5.6. Heave Precautions	
5.7. Highways Construction	56
5.8. Drainage	
5.9. Concrete Durability	
5.10. Excavations	
5.11. Coal Mining Risk Assessment and Recommendations	
5.11.1. Coal Mining Geology	
5.11.2. Recorded Coal Authority Workings	
5.11.4. Summary of Ground Investigation Works	
5.11.5. Summary of Coal Mining Issues	
5.12. Further Works	
5.13. Construction Activity and Inspection	
5.14. GEOTECHNICAL RISK REGISTER.	61
0.14. GEOTEOTHIOAE NON REGIOTER	
6. CONCLUSIONS AND RECOMMENDATIONS	64
Contaminated Land Assessment	
Geotechnical Assessment	
APPENDIX I LIMITATIONS	66
APPENDIX II GLOSSARY	68
APPENDIX III DRAWINGS	71
APPENDIX IV PHOTOGRAPHS	72
APPENDIX V E3P EXPLORATORY HOLE LOGS	75
APPENDIX V E3P EXPLORATORY HOLE LOGS	/5
APPENDIX VI CHEMICAL TESTING RESULTS	76
APPENDIX VI CHEIVIICAL TESTING RESULTS	70
APPENDIX VII ORIGIN OF TIER I GENERIC ASSESSMENT CRITERIA	77
AFF ENDIX VII ORIGIN OF THEM FOLKERIO ASSESSMENT ORIFICIAL	
APPENDIX VIII GEOTECHNICAL TESTING RESULTS	79
ALL ENDIN VIII GEG LEGITIGAE LEGITIGA REGGET G	
APPENDIX IX DYNAMIC CONE PENETROMETER TEST CERTIFICATES	80
APPENDIX X BRE365 SOAKAWAY PERMEABILITY TEST CERTIFICATES	81
APPENDIX XI COAL AUTHORITY REPORT AND MINE ABANDONMENT PLANS	82

Well Street, BuckleyPhase II Geoenvironmental Site Assessment October 2020

DRAWING LIST

14-278-001 - Site Location Plan

14-278-002 - Proposed Development Plan

14-278-003 - Historical Features Plan

14-278-004 - Site Features Plan

14-278-005 - Exploratory Hole Location Plan

14-278-006 - Depth of Made Ground Plan

14-278-007 - Depth of Topsoil

14-278-008 - Depth to Founding Strata Plan

14-278-009 - Conceptual Foundation Zoning Plan

14-278-010 - Conceptual Site Model

14-278-011 - Depth to Bedrock Plan

14-278-012 - Depth & Thickness of Peat Plan

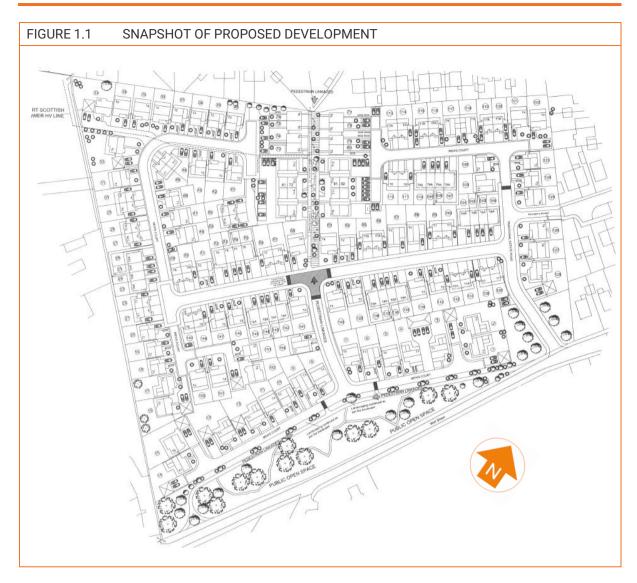
14-278-013 - Development Constraints Plan

1. INTRODUCTION

1.1. BACKGROUND

E3P has been commissioned by Alan Johnson Partnership Ltd to undertake a detailed Phase II Geoenvironmental Site Assessment for a parcel of agricultural land to the north of Well Street, Buckley.

This report is required to determine potential contaminated land liabilities, remediation requirements and geotechnical engineering works that will be required as part of the proposed low-rise residential development.


The scope of work includes the following elements:

- Detailed review of desk study;
- Design of suitable intrusive ground investigation;
- Six 30m rotary boreholes
- Window sample probeholes with, and construction of, environmental monitoring installations;
- Mechanically excavated trial pits;
- BRE35 soakaway tests;
- In-situ geotechnical testing;
- Chemical and geotechnical laboratory analysis;
- Groundwater monitoring and sampling;
- Ground gas monitoring;
- Ontamination risk assessment and conceptual site model;
- Geotechnical assessment and interpretation;
- Coal mining assessment and interpretation;
- Factual and interpretive reporting.

1.2. PROPOSED DEVELOPMENT

E3P understands that the proposed development will comprise a residential end use of 154 units (through a mix of apartment, detached, semi-detached, terraced property) with associated estate roads, utility infrastructure, private gardens and areas of landscaping.

A proposed development plan has been included in Appendix III (Ref 14-278-002) and is shown in Figure 1.1.

1.3. OBJECTIVES

The objectives of the geoenvironmental assessment are as follows:

- Undertake a stage of sampling and analysis to provide an overview of environmental issues identified.
- Assess the implications of any potential environmental risks, liabilities and development constraints associated with the site in relation to the future use of the site and in relation to off-site receptors.
- Assess the geotechnical information and provide recommendations in relation to foundations, pavement construction and floor slabs.
- Provide recommendations regarding future works required.

1.4. LIMITATIONS

The limitations of this report are presented in Appendix I.

1.5. CONFIDENTIALITY

E3P has prepared this report solely for the use of the client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from E3P; a charge may be levied against such approval.

2. GROUND INVESTIGATION

2.1. PHASE I DESK STUDY SUMMARY

Pertinent points from the previously completed E3P Ltd Phase 1 Desk Study (Ref: 14-278-R1, dated August 2020) are as follows:

- The site is underlain by glacial till (clay) and three bedrock strata through its length (sandstone, mudstone and siltstone) with secondary undifferentiated aguifer in the bedrock.
- Low lying areas of the site are at risk of surface flooding from rivers.
- No historic structures have been present on site.
- The south western area of the site is in a 5-10% Radon area and will require mitigation measures.
- The site is located within a Coal Authority reporting area but not within a development high risk.
- Soakaway drainage is unlikely to be suitable given the presence of low permeability cohesive clay stratum.
- In the absence of anthropogenic processes at the site there is a low likelihood of significant contamination and therefore a low risk to human health.
- Similarly, in the absence of significant contamination, cohesive strata, and the presence of an undifferentiated aquifer there is considered a low risk to controlled waters.
- Infilled ponds/hedgerows are a likely source of Made Ground.
- Made Ground and localised areas of peat and possibility of shallow mine workings are potential sources of ground gas at the site.

E3P has also been provided with a Smith Grant Phase 1 and 2 Contaminated Land and Geotechnical Assessment completed on behalf of Flintshire County Council September 2017 (Ref: R2458-R01-v1). The pertinent points are listed below:

- The site comprises a vacant parcel of open land with two fields separated by a hedgerow.
- Historical mapping confirmed the land has remained undeveloped through its history.
- 12 trial pits completed across the site.
- Ground conditions identified across the site were consistent and comprised a surface cover of topsoil overlying a firm to stiff glacial clay. One location at the southeast boundary identified soft clay with peat.
- Groundwater was not encountered other than one trial pit in the south east that was flooded.
- A human health assessment confirmed the presence of lead in the topsoil stratum.
- Ground gas monitoring did not identify any elevated concentrations of carbon dioxide or methane.
- The report recommended shallow traditional spread foundations across the site other than where groundwater and peat were identified to the south east boundary of the site. It was recommended this material is excavated and replaced with an engineered fill.

2.2. GENERAL OVERVIEW

A ground investigation has been designed based on the findings of the desk study, with exploratory holes advanced to target specific potential contaminant sources summarised in Table 2.1. The investigation has also been used to collect geotechnical information to assist in the design and construction of the proposed development.

Exploratory fieldwork was completed between 1st September and 2nd September 2020. The works are summarised in Table 2.1.

TABLE 2.1 SUMMARY OF FIELDWORK

POTENTIAL SOURCE/RATIONALE	LOCATION HOLE	ТҮРЕ	MAXIMUM DEPTH (m bgl)	MONITORING WELLS RESPONSE ZONE (m bgl)
	WS101		4.38	1.00-4.00
	WS102		3.28	1.00-3.00
	WS102A		5.45	N/A
	WS103		4.30	1.00-4.00
	WS104		3.30	1.00-3.00
	WS105		3.90	1.00-3.60
	WS106	Window Sample	2.38	1.00-2.00
	WS106A	Probehole	2.88	N/A
	WS107		3.41	1.00-3.00
	WS108		4.32	1.00-4.00
	WS109		4.39	1.00-4.00
	WS110		5.45	1.00-5.00
General Ground	WS111		4.40	1.00-4.00
Conditions Including the	WS112		4.33	1.00-4.00
Presence/Nature of Obstructions	TP101		3.00	N/A
Obstructions	TP102		3.00	N/A
	TP103		2.50	N/A
	TP104		3.10	N/A
	TP105/SA101		2.00	N/A
	TP106/SA102		2.00	N/A
	TP107/SA103	Mechanically Excavated Trial	2.00	N/A
	TP108/SA104	Pits	2.00	N/A
	TP109		3.00	N/A
	TP110		3.10	N/A
	TP111		3.10	N/A
	TP112		3.30	N/A
	TP113		3.30	N/A
	TP114		3.00	N/A

POTENTIAL SOURCE/RATIONALE	LOCATION HOLE	TYPE	MAXIMUM DEPTH (m bgl)	MONITORING WELLS RESPONSE ZONE (m bgl)
	TP115		3.00	N/A
	TP116		3.30	N/A
	TP117		2.10	N/A
	TP118		3.00	N/A
	TP119		3.00	N/A
	TP120		3.30	N/A
General Ground	TP121	Mechanically Excavated Trial Pits	2.60	N/A
Conditions Including the	TP122		3.00	N/A
Presence/Nature of Obstructions	TP123		2.50	N/A
Obstructions	TP124		3.70	N/A
	TP125		2.90	N/A
	TP126		3.60	N/A
	TP127		3.00	N/A
	TP128		3.00	N/A
	TP129		2.80	N/A
	TP130		3.00	N/A
Investigation of Shallow Mine Workings Across the Site RB101-RB106		Rotary Open Holes	30.00	N/A

Mechanically excavated trial pits were advanced to investigate ground conditions and to retrieve environmental samples, spatially distributed to offer the maximum site coverage whilst also being advanced to target specific contaminant sources.

Four trial pits were utilised to carry out BRE365 soakaway tests spread throughout the site to obtain data pertinent to the permeability characteristics of the underlying stratum.

Window sample probeholes were advanced to undertaken in-situ detailed geotechnical testing, obtain environmental samples and install groundwater and ground gas monitoring wells.

The series of rotary boreholes were advanced to investigate the potential presence of shallow mine workings. These boreholes were drilled in accordance with the CA permissions process and industry best practice.

The sampling locations are illustrated in Drawing 14-278-005 (Appendix III). The ground conditions encountered are indicated on the logs, which are provided in Appendix V.

Return visits were made to monitor installations for groundwater level and gas concentrations. In addition, selected wells were purged and samples of groundwater recovered for chemical analysis.

2.3. IN-SITU STANDARD PENETRATION TESTING (SPT)

In-situ geotechnical testing was conducted using the standard penetration test (SPT) and, where the ground is granular, a 60° cone (SPT(C)) was used instead of the sampling tube. The results are shown in the probehole logs in Appendix V and presented in Table 3.5 and discussed in Section 5.

2.4. IN-SITU CALIFORNIA BEARING RATIO (CBR)

In-situ CBR tests were undertaken at selected locations using a TRL probe. Tests were undertaken at depths of between 0.3 m and 1 m below ground level in order to intersect the likely pavement subformation level. The results are presented in Table 3.10 and test certificates are included within Appendix IX.

2.5. PERMEABILITY TESTS

Four soakaway permeability tests were undertaken (SA101-SA104) in order to assess the likely permeability of the underlying strata to determine the potential suitability for soakaway drainage within the proposed development. The results are presented in Table 3.8 and the test certificates are included within Appendix X.

2.6. LABORATORY ANALYSIS

Selected soil sam	iples were s	submitted for	a range of	chemical a	nalysis com	prisina:
ocicotca con can	ipico mere	Jubililitua ioi	a range or	onconnoun a	manyono oom	prionig.

- Metals.
- pH, total sulphate, water-soluble sulphate (2:1 extract).
- Sulphide.
- Cyanide.
- Phenols.
- Total and speciated polycyclic aromatic hydrocarbons (PAHs).
- Asbestos identification and quantification.
- Banded total petroleum hydrocarbon (TPH).

I2 Analytical undertook the analytical work and the testing results are included in Appendix VI and discussed in Section 4.

Selected samples were submitted to PSL Laboratory where the following geotechnical tests were undertaken:

- Atterberg limits determinations;
- Particle size distribution;
- One-dimensional consolidation test and
- Single-stage triaxial tests.

Laboratory analysis sheets are included in Appendix VIII and are summarised in Section 5.

3. GROUND AND GROUNDWATER CONDITIONS

3.1. SUMMARY OF GROUND CONDITIONS

The ground investigation generally confirms the published geology and identifies the strata set out in Table 3.1.

TABLE 3.1 SUMMARY OF STRATA

	DEPTH TO STRATUM (m bgl)									
HOLE	MADE GROUND	TOPSOIL	STIFF TO VERY STIFF CLAY	GRAVEL	CLAYEY SAND	WEATHERED BEDROCK				
TP101		0.00-0.20	0.20-3.00							
TP102		0.00-0.20	0.20-3.00							
TP103		0.00-0.20	0.20-2.50							
TP104		0.00-0.30	0.30-3.10							
TP105/SA101		0.00-0.30	0.30-2.00							
TP106/SA102		0.00-0.30	0.30-2.00							
TP107/SA103		0.00-0.30	0.30-2.00							
TP108/SA104		0.00-0.20	0.20-2.00							
TP109		0.00-0.20	0.20-3.00							
TP110		0.00-0.40	0.40-3.10							
TP111		0.00-0.30	0.30-3.10							
TP112		0.00-0.20	0.20-3.30							
TP113		0.00-0.20	0.20-3.30							
TP114		0.00-0.20	0.20-3.00							
TP115		0.00-0.20	0.20-3.00							
TP116		0.00-0.30	0.30-3.20	3.20-3.30						
TP117		0.00-0.20	0.20-2.00	2.00-2.10						
TP118		0.00-0.20	0.20-3.00							
TP119		0.00-0.20	0.20-3.00							
TP120		0.00-0.30	0.30-2.90		2.90-3.30					
TP121	0.00-0.50		0.50-2.50	2.50-2.60						
TP122		0.00-0.20	0.20-3.00							
TP123	0.00-0.30		0.30-2.50							
TP124		0.00-0.30	0.30-3.00		3.00-3.70					
TP125		0.00-0.20	0.20-2.90							
TP126		0.00-0.20	0.20-3.60							
TP127		0.00-0.20	0.20-3.00							
TP128		0.00-0.20	0.20-3.00							

		DEPTH TO STRATUM (m bgl)									
HOLE	MADE GROUND	TOPSOIL	STIFF TO VERY STIFF CLAY	GRAVEL	CLAYEY SAND	WEATHERED BEDROCK					
TP129		0.00-0.20	0.20-2.80								
TP130		0.00-0.20	0.20-3.00								
WS101		0.00-0.15	0.15-4.38								
WS102		0.00-0.20	0.20-3.28								
WS102A		0.00-0.20	0.20-5.45								
WS103		0.00-0.30	0.30-4.30								
WS104		0.00-0.20	0.20-3.30								
WS105		0.00-0.20	0.20-3.60	3.60-3.90							
WS106		0.00-0.20	0.20-2.00	2.00-2.38							
WS106A		0.00-0.20	0.20-2.50	2.50-2.88							
WS107		0.00-0.20	0.20-3.41								
WS108		0.00-0.20	0.20-4.32								
WS109		0.00-0.20	0.20-4.45								
WS110		0.00-0.20	0.20-4.50		4.50-5.45						
WS111		0.00-0.30	0.30-4.40								
WS112		0.00-0.20	0.20-4.33								
RBH101		0.00-0.40	0.40-3.40			3.40-30.00					
RBH102		0.00-0.10	0.10-5.50		5.50-8.10	8.10-30.00					
RBH103		0.00-0.20	0.20-4.00	4.00-7.60		7.60-30.00					
RBH104		0.00-0.20	0.20-3.30			3.30-30.00					
RBH105		0.00-0.30	0.30-4.80		4.80-6.90	6.90-30.00					
RBH106		0.00-0.20	0.20-3.80			3.80-30.00					

3.2. MADE GROUND

Made Ground has been identified in two discrete areas of the site (TP121-0.50 and TP123-0.30) as reworked topsoil with clay pipe fragments and as reworked natural clay with fragments of a land drain present. Not considered significant sources of potential contaminants and are likely due to agricultural practices at the site. The full depth of Made Ground has been proven in both instances.

A depth of Made Ground plan is presented within Appendix III (Ref: 14-278-006).

3.3. TOPSOIL

Topsoil has been identified in all exploratory locations with the exception of the two Made Ground areas. Topsoil is encountered as a slightly gravelly sandy clay with frequent rootlets and gravel of fine to coarse subangular to subrounded mudstone. Topsoil has been identified to depths between ground level and 0.30m bgl.

A depth of topsoil plan is presented in Appendix III (Ref: 14-278-007)

3.4. DRIFT DEPOSITS

Natural drift deposits have been identified within all exploratory locations. Predominantly throughout the site a gravelly sandy CLAY with gravel of mudstone and sandstone is identified. Clay stratum has been noted as highly friable and so hand shear vane tests could not be completed in some cases.

Occasionally a grey gravel of mudstone is identified at the base of excavations (TP116, TP117, TP121, WS105, WS106 and WS106A) circa 2.00-3.00m bgl and within RBH103 between 4.00m and 7.60m bgl. Mudstone bedrock is noted through the site and this could therefore be representative of a weathered layer of bedrock stratum.

In rare locations (TP120, 124, WS110, RBH102 and RBH105) a clayey sand is identified at similar depths.

Within the previous site investigation a 'highly localised' area of peat was identified to the south west of the site. E3P advanced a number of locations in this area that has not identified peat.

3.5. SOLID GEOLOGY

The solid bedrock geology was identified throughout the site in rotary positions at depths between 3.30m and 8.10m bgl. Bedrock was identified as interbedded grey siltstone, sandstone and mudstone with occasional marl. Bedrock strata was encountered to a maximum proven depth of 30.00m bgl.

3.6. GROUNDWATER

Groundwater strikes were encountered as seepages. The depth of the seepages are shown on the exploratory hole records in Appendix V and are summarised in Table 3.2.

TABLE 3.2 SUMMARY GROUNDWATER STRIKES

LOCATION	DEPTH TO STRIKE (m)	NOTES
TP116	3.20	Steady water ingress
TP117	2.00	Steady water ingress
WS101	3.00	Perched
WS102A	4.00	Perched
WS106A	2.50	Perched
WS108	3.00	Perched

Monitoring was undertaken using an electronic dip meter and interface probe to record the depth to groundwater and the thickness of any free-phase hydrocarbon product, if present. These results are summarised in Table 3.13.

3.7. VISUAL AND OLFACTORY EVIDENCE OF CONTAMINATION

Visual and olfactory evidence of potential contamination has not been identified during the site investigation.

3.8. SOIL CONSISTENCY

Undrained shear strength values were measured using both field hand shear vane tests and laboratory undrained triaxial tests. Results of the tests are presented in Table 3.3 and Table 3.4, which indicate the clay soils to vary between stiff and very stiff. Strength test data is generally consistent with the field descriptions of the aforementioned soils.

TABLE 3.3 SUMMARY OF HAND SHEAR VANE TESTS

LOCATION	DEPTH	SHEAR STRENGTH (kPA)	CALCULATED ALLOWABLE BEARING PRESSURE (kN/m²)
TP102	2.00	78	179.4
TP107/SA103	0.50	109	250.70
TP107/SA103	1.00	131	301.30
TP110	2.50	157	361.10
TP111	0.80	38	87.40
TP111	1.20	42	96.60
TP111	2.00	45	103.50
TP111	2.50	120	2760
TP116	2.50	114	262.20
TP120	0.60	156	358.80
TP129	0.40	114	262.20

Results of the standard penetration tests, including undrained shear strengths derived from SPTs are included in Table 3.5.

TABLE 3.4 SUMMARY OF UNDRAINED SHEAR STRENGTH TEST RESULTS

LOCATION	SAMPLE DEPTH (m)	LAB DESCRIPTION	UNDRAINED SHEAR STRENGTH (kN/m²)	CONSISTENCY
WS102	0.5-1.0	Stiff, brown, slightly gravelly, sandy CLAY	77	Stiff

3.9. SIDE STABILITY AND EASE OF EXCAVATION

The sides of the exploratory trial pit excavations appeared to be stable during excavation.

The presence of stiff to very stiff clay deposits meant excavation was relatively slow through the natural strata; however, no obstructions or boulders were encountered during site investigations.

October 2020

TABLE 3.5 STANDARD/CONE PENETRATION TEST RESULTS

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE		TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS101	1.00	gravelly slightly sandy CLAY	18	18.15	N/A	High strength	Very Stiff	90.73	186.55
WS101	2.00	gravelly slightly sandy CLAY	18	16.44	N/A	High strength	Very Stiff	82.22	169.04
WS101	3.00	gravelly slightly sandy CLAY	25	21.74	N/A	High strength	Very Stiff	108.71	223.50
WS101	4.00	gravelly slightly sandy CLAY	50	42.24	N/A	Very high strength	Very Stiff	211.21	434.25
WS102	1.00	gravelly slightly sandy CLAY	17	17.14	N/A	High strength	Very Stiff	85.69	176.18
WS102	2.00	gravelly slightly sandy CLAY	28	25.58	N/A	High strength	Very Stiff	127.90	262.95
WS102	2.90	gravelly slightly sandy CLAY	50	43.65	N/A	Very high strength	Very Stiff	218.23	448.69
WS102A	1.00	gravelly slightly sandy CLAY	20	20.16	N/A	High strength	Very Stiff	100.81	207.28
WS102A	2.00	gravelly slightly sandy CLAY	28	25.58	N/A	High strength	Very Stiff	127.90	262.95
WS102A	3.00	gravelly slightly sandy CLAY	29	25.22	N/A	High strength	Very Stiff	126.10	259.26
WS102A	4.00	gravelly slightly sandy CLAY	27	22.81	N/A	High strength	Very Stiff	114.05	234.50
WS102A	5.00	gravelly slightly sandy CLAY	21	17.42	N/A	High strength	Very Stiff	87.11	179.10
WS103	1.00	gravelly slightly sandy CLAY	20	20.16	N/A	High strength	Very Stiff	100.81	207.28
WS103	2.00	gravelly slightly sandy CLAY	17	15.53	N/A	High strength	Very Stiff	77.65	159.65
WS103	3.00	gravelly slightly sandy CLAY	21	18.26	N/A	High strength	Very Stiff	91.31	187.74
WS103	4.00	gravelly slightly sandy CLAY	50	42.24	N/A	Very high strength	Very Stiff	211.21	434.25

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS104	1.00	gravelly slightly sandy CLAY	18	18.15	N/A	High strength	Very Stiff	90.73	186.55
WS104	2.00	gravelly slightly sandy CLAY	27	24.67	N/A	High strength	Very Stiff	123.33	253.56
WS104	3.00	gravelly slightly sandy CLAY	50	43.48	N/A	Very high strength	Very Stiff	217.41	447.00
WS105	1.00	gravelly slightly sandy CLAY	14	14.11	N/A	Medium strength	Stiff	70.57	145.09
WS105	2.00	gravelly slightly sandy CLAY	20	18.27	N/A	High strength	Very Stiff	91.35	187.82
WS105	3.00	gravelly slightly sandy CLAY	21	18.26	N/A	High strength	Very Stiff	91.31	187.74
WS105	3.60	gravelly slightly sandy CLAY	50	42.66	N/A	Very high strength	Very Stiff	213.32	438.59
WS105	3.60	GRAVEL	50	42.66	Dense	N/A	N/A	N/A	426.64
WS106	1.00	gravelly slightly sandy CLAY	15	15.12	N/A	High strength	Very Stiff	75.61	155.46
WS106	2.00	GRAVEL	50	45.68	Dense	N/A	N/A	N/A	456.77
WS106A	1.00	gravelly slightly sandy CLAY	21	21.17	N/A	High strength	Very Stiff	105.86	217.64
WS106A	2.80	GRAVEL	50	43.82	Dense	N/A	N/A	N/A	438.21
WS107	1.00	gravelly slightly sandy CLAY	24	24.20	N/A	High strength	Very Stiff	120.98	248.73
WS107	2.00	gravelly slightly sandy CLAY	24	21.92	N/A	High strength	Very Stiff	109.62	225.39
WS107	3.00	gravelly slightly sandy CLAY	50	43.48	N/A	Very high strength	Very Stiff	217.41	447.00

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS108	1.00	gravelly slightly sandy CLAY	18	18.15	N/A	High strength	Very Stiff	90.73	186.55
WS108	2.00	gravelly slightly sandy CLAY	23	21.01	N/A	High strength	Very Stiff	105.06	216.00
WS108	3.00	gravelly slightly sandy CLAY	22	19.13	N/A	High strength	Very Stiff	95.66	196.68
WS108	4.00	gravelly slightly sandy CLAY	50	42.24	N/A	Very high strength	Very Stiff	211.21	434.25
WS109	1.00	gravelly slightly sandy CLAY	22	22.18	N/A	High strength	Very Stiff	110.90	228.00
WS109	2.00	gravelly slightly sandy CLAY	33	30.15	N/A	Very high strength	Very Stiff	150.73	309.91
WS109	3.00	gravelly slightly sandy CLAY	22	19.13	N/A	High strength	Very Stiff	95.66	196.68
WS109	4.00	gravelly slightly sandy CLAY	50	42.24	N/A	Very high strength	Very Stiff	211.21	434.25
WS110	4.00	gravelly slightly sandy CLAY	34	28.72	N/A	High strength	Very Stiff	143.62	295.29
WS110	5.00	gravelly slightly sandy CLAY	34	28.21	N/A	High strength	Very Stiff	141.04	289.97
WS110	2.80	gravelly slightly sandy CLAY	50	43.82	N/A	Very high strength	Very Stiff	219.10	450.48
WS110	1.00	gravelly slightly sandy CLAY	17	17.14	N/A	High strength	Very Stiff	85.69	176.18
WS110	2.00	gravelly slightly sandy CLAY	22	20.10	N/A	High strength	Very Stiff	100.49	206.61
WS110	3.00	gravelly slightly sandy CLAY	42	36.53	N/A	Very high strength	Very Stiff	182.63	375.48

BOREHOLES	DEPTH (m bgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS 5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)	ALLOWABLE BEARING PRESSURE (kN/m²)*
WS111	1.00	gravelly slightly sandy CLAY	18	18.15	N/A	High strength	Very Stiff	90.73	186.55
WS111	2.00	gravelly slightly sandy CLAY	33	30.15	N/A	Very high strength	Very Stiff	150.73	309.91
WS111	3.00	gravelly slightly sandy CLAY	33	28.70	N/A	High strength	Very Stiff	143.49	295.02
WS111	4.00	gravelly slightly sandy CLAY	50	42.24	N/A	Very high strength	Very Stiff	211.21	434.25
WS112	1.00	gravelly slightly sandy CLAY	17	17.14	N/A	High strength	Very Stiff	85.69	176.18
WS112	2.00	gravelly slightly sandy CLAY	24	21.92	N/A	High strength	Very Stiff	109.62	225.39
WS112	3.00	gravelly slightly sandy CLAY	43	37.40	N/A	Very high strength	Very Stiff	186.98	384.42
WS112	4.00	gravelly slightly sandy CLAY	50	42.24	N/A	Very high strength	Very Stiff	211.21	434.25

NOTES

^{*} The Allowable Bearing Pressure (ABP) should be considered indicative.

3.10. CONSOLIDATION

One undisturbed samples of Glacial Till were submitted for oedometer analysis. The results are provided in Table 3.7.

TABLE 3.7 OEDOMETER CONSOLIDATION RESULTS

	DEPTH	SAMPLE TYPE	MOISTURE	OEDOMETER CONSOLIDATION				
LOCATION	(m)		CONTENT (%)	PRESSURE RANGE (kPa)	Mv (m²/MN)	Cv (m²/year)		
			0-35	Swelling	Swelling			
		U100	15	35-70	0.197	40.888		
CP102	1.50			70-140	0.150	13.570		
				140-280	0.101	9.634		
				280-35	0.034	5.465		

When considered at overburnded pressure with an additional load of 120 kPa the coefficient of volume compressibility (Mv) ranged form $0.150~\text{m}^2/\text{MN}$ up to $0.197~\text{m}^2/\text{MN}$. The material is considered to be medium compressibility.

The rate at which settlement is likely to occur is determined by the coefficient of consolidation (Cv). As as shown in Table 3.7, the coefficient ranges from $5.465 \text{ m}^2/\text{yr}$ to $40.89 \text{ m}^2/\text{yr}$.

3.11. SOIL INFILTRATION

In-situ BRE 365 Soakaway tests were undertaken over a 48 hour period within trial pits completed as SA101-SA105.

The results are presented in Table 3.8 below and the test certificates are included within Appendix X.

TABLE 3.8 BRE365 SOAKAWAY TESTING RESULTS

LOCATION	DEPTH (m)	MATERIAL	TEST NO.	SOIL INFILTRATION RATE (m/s)
SA101	2.00	Slightly gravelly CLAY	Test No.1	N/A
SA102	2.00	Slightly gravelly CLAY	Test No.1	N/A
SA103	2.00	Slightly gravelly CLAY	Test No.1	N/A
SA104	2.00	Slightly gravelly CLAY	Test No.1	N/A

Soil infiltration was taken over the wetted area from between 75% and 25% of the effective depth. All tests showed cohesive drift deposits to have poor soakage potential.

Therefore, considering the significant volumes of clay on the site, it is considered that soakaway drainage will not be suitable for the proposed development. However, the application of soakaway drainage will ultimately be dependent on the specific requirements of the development. All soakaways should be designed in accordance with BRE Special Digest 365 – Soakaway Design.

3.12. SOIL PLASTICITY

The liquid and plastic limits of samples of natural in-situ clay are determined using the cone penetrometer method and the rolling thread test. These tests enable determination of an average plasticity index (PI) for each "type" of clay, although judgement is applied where variable results are reported.

PI can be related to shrinkability (low, medium or high) and then to minimum founding depth.

E3P typically only consider a soil to be shrinkable if the proportion finer than 63 µm is > 35%.

PI results are compared against guidance given in the NHBC standards, Chapter 4.2 (revised January 2014), which advocates the use of modified plasticity index (I'p), defined as:

$$I'p = Ip \times (\% < 425 \mu m/100)$$

In other words, if PI is 30%, but the soil contains $80\% < 425 \mu m$, then I'p = $30 \times 80/100 = 24\%$.

It should be noted that in accordance with the requirements of BS 1377, the % passing the 425 μ m sieve is routinely reported by testing labs.

E3P apply engineering judgement where PI results are spread over a range of classifications. Consideration is given to the average values for each particular soil type (differentiate between residual soil and alluvium), the number of results in each class and the actual values.

The Atterberg limits determinations, summarised in Table 3.9, show the clay to be of low plasticity.

TABLE 3.9 SUMMARY OF PLASTICITY INDEX TEST RESULTS

LOCATION	DEPTH (m)	NATURAL MOISTURE CONTENT (%)	PLASTIC LIMIT (%)	(%)	PLASTICITY INDEX (%)	PASSING 425 µm SIEVE (%)	MODIFIED PLASTICITY INDEX	NHBC VOLUME CHANGE POTENTIAL
WS107	1.00	15	16	31	15	94	14.1	Low
WS112	2.00	13	19	38	19	88	16.72	Low
WS104	2.00	12	17	33	16	90	14.4	Low

The results of the Atterberg limits testing confirmed that the soils would be deemed to be "Low Volume Change Potential" in accordance with the classification system utilised by the LABC/NHBC industry guidance.

3.13. CALIFORNIA BEARING RATIO

The California bearing ratio (CBR) for the soils were measured using an in-situ TRL probe. The results are summarised in Table 3.10.

The result sheets are included in Appendix IX and the locations are shown on Drawing 14-278-005 (Appendix III). CBR results have been averaged from the blow counts across the strata tested and any abnormally high blow counts ignored as these are likely to be from larger granular material and so represent anomalies.

TABLE 3.10 SUMMARY OF DCP RESULTS

LOCATION	DEPTH (m)	STRATA	IN-SITU OR LAB TEST	CBR (%)
DCP101	0.22-0.79		In-Situ	8.71
DCP102	0.43-0.65		In-Situ	4.27
DCP103	0.20-0.65		In-Situ	7.11
DCP104	0.36-0.74		In-Situ	8.72
DCP105	0.37-0.71		In-Situ	8.62
DCP106	0.18-0.58	Climbah, manalih, a arah, Ol AV	In-Situ	5.40
DCP107	0.23-0.80	Slightly gravelly sandy CLAY	In-Situ	6.51
DCP108	0.45-0.80		In-Situ	6.92
DCP109	0.29-0.68		In-Situ	6.99
DCP110	0.20-0.39		In-Situ	5.28
DCP111	0.17-0.44		In-Situ	4.40
DCP112	0.41-0.85		In-Situ	6.71

It should be noted that the reported CBR results were obtained from soils in a highly undisturbed state. If, however, the topsoil and surface cover is removed during periods of wetter climatic condition, the formation will soften, reducing the CBR.

3.14. pH AND SULPHATE

Chemical analyses for pH and soluble sulphate content contained in Appendix VI (summarised in Table 3.11), shows that the soils at the site generally meet Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with BRE *Special Digest 1* (2005).

TABLE 3.11 SUMMARY OF pH AND SULPHATE DATA

LOCATION	DEPTH (m)	SO ₄ IN 2:1 WATER/SOIL (g/l)	pH VALUE	CLASSIFICATION
TP105	1.00	0.04	7.9	Class DS-1, AC-1
TP108	0.10	0.029	7.9	Class DS-1, AC-1
TP111	0.10	0.014	7.4	Class DS-1, AC-1
TP112	1.00	0.028	8.1	Class DS-1, AC-1
TP120	0.10	0.024	7.1	Class DS-1, AC-1
TP121	0.40	0.086	7.2	Class DS-1, AC-1
WS107	0.10	0.014	6.7	Class DS-1, AC-1

3.15. GROUND GAS

A ground gas assessment has been completed in accordance with guidance provided within CIRIA 665 – Assessing risk posed by hazardous ground gases to buildings.

3.16. INVESTIGATION RATIONALE

The ICSM has identified that the infilled ponds/hedgerow and potential shallow coal mining may represent a potential source of ground gas generation. Based on the identification of these sources, E3P has determined that the site represents a low ground gas source generation potential.

Within the context of the proposed residential end use and ground gas generation potential, the gas assessment requires that six visits are required over months, with at least two sets of readings at low or falling atmospheric pressure as set out within CIRIA 665 Tables 5.5a and 5.5b.

The spacing requirements for monitoring wells are detailed within CIRIA 665 Table 4.2, which indicates that for low gas hazard sites (Made Ground with limited degradable material, organic clay of limited thickness) and a high sensitivity development, nominal well spacing should be between 25 m and 50 m.

The spacing requirements for monitoring wells are detailed within CIRIA 665 Table 4.2, which indicates that for moderate gas hazard sites (older domestic landfill sites, disused shallow mine workings, hydrocarbon vapour sources) and a high sensitivity development, nominal well spacing should be between 25 m and 50 m.

The spacing requirements for high gas hazard sites (domestic landfill sites) and a high sensitivity development, nominal well spacing should be less than 25 m.

TABLE 3.12 GROUND GAS MONITORING LOCATION RATIONALE

LOCATION	GROUND GAS SOURCE	DEPTH OF MONITORING WELL (m)		
WS101	Natural Strata	1.00-4.00		
WS102	Natural Strata	1.00-3.00		
WS103	Natural Strata	1.00-4.00		
WS104	Natural Strata	1.00-3.00		
WS105	Natural Strata	1.00-3.60		
WS106	Natural Strata	1.00-2.00		
WS107	Natural Strata	1.00-3.00		
WS108	Natural Strata	1.00-4.00		
WS109	Natural Strata	1.00-4.00		
WS110	Natural Strata	1.00-5.00		
WS111	Natural Strata	1.00-4.00		
WS112	Natural Strata	1.00-4.00		

3.17. MONITORING METHODOLOGY

Concentrations of methane (CH₄), carbon dioxide (CO₂) and oxygen (O₂) were measured using a calibrated infra-red gas analyser (GFM435) with gas flow rates were measured using an integrated flow meter.

Gas measurements were recorded for a minimum of 60 seconds at each location, at which point the maximum concentration of CH_4 and CO_2 , together with the lowest concentration of O_2 were recorded. The results of the ground gas monitoring are presented in Table 3.13.

TABLE 3.13 SUMMARY OF GROUND GAS MONITORING RESULTS

WELL	DATE	CH₄ INITIAL (%V/V)	CH ₄ STEADY (%V/V)	CH₄ GSV (I/hr)	CO ₂ INITIAL (%V/V)	CO ₂ STEADY (%V/V)	CO ₂ GSV (I/hr)	O ₂ (%V/V)	ATMOS (mb)	ATMOS. DYNAMIC	FLOW (l/hr)	RESPONSE ZONE (m bgl)	DEPTH TO BASE (m bgl)	DEPTH TO WATER (m bgl)
WS101	22/9/20	0.10	0.10	0.00052	0.60	0.60	0.00312	19.80	991	falling	0.52	1.00-4.00	2.87	2.11
WS102	22/9/20	0.10	0.10	0.00096	2.20	2.20	0.02112	18.30	991	falling	0.96	1.00-3.00	3.15	3.00
WS103	22/9/20	0.10	0.10	0.00026	0.70	0.70	0.00182	19.20	991	falling	0.26	1.00-4.00	4.14	Dry
WS104	22/9/20	0.10	0.10	0.00026	2.80	2.80	0.00728	15.50	991	falling	0.26	1.00-3.00	3.13	Dry
WS105	22/9/20	0.10	0.10	0.00026	3.70	3.70	0.00962	14.00	991	falling	0.26	1.00-3.60	3.77	3.68
WS106	22/9/20	0.10	0.10	0.00052	0.60	0.60	0.00312	19.80	991	falling	0.52	1.00-2.00	2.12	2.00
WS107	22/9/20	0.10	0.10	0.00026	1.90	1.90	0.00494	15.60	991	falling	0.26	1.00-3.00	3.50	Dry
WS108	22/9/20	0.10	0.10	0.00013	7.20	7.20	0.00936	9.90	991	falling	0.13	1.00-4.00	3.20	2.08
WS109	22/9/20	0.10	0.10	0.0001	2.20	2.20	0.0022	12.10	991	falling	0.10	1.00-4.00	4.49	Dry
WS110	22/9/20	0.10	0.10	0.0034	1.70	1.70	0.0578	13.30	991	falling	3.40	1.00-5.00	5.51	Dry
WS111	22/9/20	0.10	0.10	0.00176	4.60	4.60	0.08096	16.80	991	falling	1.76	1.00-4.00	3.37	1.20
WS112	22/9/20	0.10	0.10	0.0018	1.80	1.80	0.0324	14.00	991	falling	1.80	1.00-4.00	4.20	Dry

4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT

E3P has undertaken a Tier 1 qualitative risk assessment to determine if any potential contaminants within the underlying soils and groundwater pose an unacceptable level of risk to the identified receptors.

4.1. HUMAN HEALTH RISK ASSESSMENT

At Tier 1 stage, the long term (chronic) human health toxicity of the soil has been assessed by comparing the on-site concentrations of organic and inorganic compounds with reference values published in LQM/CIEH S4UL (S4UL3267).

The results of this comparison have been summarised within Table 4.1.

TABLE 4.1 SUMMARY OF INORGANIC AND HYDROCARBON TOXICITY ASSESSMENT FOR A RESIDENTIAL END USE

DETERMINANT	UNIT	GAC	N	МС	LOC. OF EX	PATH- WAY	ASSESSMENT
Arsenic	mg/kg	37	15	12	N/A	1	No Further Action
Cadmium	mg/kg	17	15	0.4	N/A	1	No Further Action
Chromium (VI)	mg/kg	6.1	15	< 4.0	N/A	1	No Further Action
Lead	mg/kg	200	15	430 230	TP123-0.10 TP111-0.10	1	Further Action
Mercury	mg/kg	1.2	15	< 0.30	N/A	3	No Further Action
Nickel	mg/kg	180	15	29	N/A	1	No Further Action
Selenium	mg/kg	250	15	< 1.0	N/A	1	No Further Action
Copper	mg/kg	2400	15	32	N/A	1	No Further Action
Zinc	mg/kg	3700	15	140	N/A	1	No Further Action
Cyanide - Total	mg/kg	791	15	< 1.0	N/A	1	No Further Action
Phenols - Total	mg/kg	210	7	< 1.0	N/A	1	No Further Action
Asbestos	Fibres	NFD	15	NFD	N/A	4	No Further Action
Naphthalene	mg/kg	2.3	15	<0.05	N/A	3	No Further Action
Acenaphthylene	mg/kg	170	15	<0.05	N/A	2	No Further Action
Acenaphthene	mg/kg	210	15	<0.05	N/A	1	No Further Action
Fluorene	mg/kg	170	15	<0.05	N/A	1	No Further Action
Phenanthrene	mg/kg	95	15	0.46	N/A	2	No Further Action
Anthracene	mg/kg	2400	15	0.15	N/A	2	No Further Action
Fluoranthene	mg/kg	280	15	1.10	N/A	2	No Further Action
Pyrene	mg/kg	620	15	0.82	N/A	2	No Further Action
Benzo(a)Anthracene	mg/kg	7.2	15	0.996	N/A	2	No Further Action
Chrysene	mg/kg	15	15	0.92	N/A	2	No Further Action
Benzo(b)Fluoranthene	mg/kg	2.6	15	1.10	N/A	2	No Further Action
Benzo(k)Fluoranthene	mg/kg	77	15	0.55	N/A	2	No Further Action
Benzo(a)Pyrene**	mg/kg	2.2	15	0.88	N/A	2	No Further Action
Indeno(123-cd)Pyrene	mg/kg	27	15	0.44	N/A	2	No Further Action
Dibenzo(a,h)Anthracene	mg/kg	0.24	15	<0.05	N/A	2	No Further Action
Benzo(ghi)Perylene	mg/kg	320	15	0.44	N/A	2	No Further Action
TPH C5-C6 (aliphatic)*	mg/kg	42	15	<1.0	N/A	3	No Further Action
TPH C6-C8 (aliphatic)*	mg/kg	100	15	<0.1	N/A	3	No Further Action
TPH C8-C10 (aliphatic)*	mg/kg	27	15	<0.1	N/A	3	No Further Action
TPH C10-C12 (aromatic)*	mg/kg	74	15	<2.0	N/A	3	No Further Action
TPH C12-C16 (aromatic)*	mg/kg	140	15	<4.0	N/A	3	No Further Action
TPH C16-C21 (aromatic)*	mg/kg	260	15	9.7	N/A	1	No Further Action

October 2020

DETERMINANT	UNIT	GAC	N	МС	LOC. OF EX	PATH- WAY	ASSESSMENT
TPH C21-C35 (aromatic)*	mg/kg	1100	15	48	N/A	1	No Further Action

Notes

Main exposure pathways: 1 = soil ingestion, 2 = dermal contact and ingestion, 3 = vapour inhalation (indoor), 4 = dust inhalation.

Abbreviations: GAC = general assessment criteria, n = number of samples, MC = maximum concentration; Loc of Ex = location of exceedance; NFD = no fibres detected.

Referring to Table 4.1, the results of this direct comparison indicates that the data exceeds the screening criteria for a residential end use for the following contaminant:

🔯 Lead.

Asbestos, petroleum hydrocarbons and poly aromatic hydrocarbons have not been identified within any of the samples submitted for assessment.

The laboratory analysis confirms the assessment within the initial conceptual site model that the main constituents of concern were likely to be heavy metals.

In relation to the exceedance in lead, the main exposure pathways based on the Tier I exceedances is soil ingestion. These exceedances were noted within two descrete loactaions (TP111 and TP123) within the topsoil at 0.10 m bgl.

HUMAN HEALTH RISK ASSESSMENT AND MITIGATION

The elevated concentrations have a primary exposure pathway related to ingestion of soils. The risk to chronic human health associated with the elevated concentrations on inorganic heavy metals and nonvolatile PAH compounds can be mitigated through the installation of a suitable cover system in all proposed private gardens, landscaping and public open space to remove any potential for direct exposure to impacted soils.

Alternatively, given that the exceedances are localised they could be treated as an isolated hotspot and removed during a phase of remedial works with validation sampling to ensure future placement within a low risk area. On completion, a 600mm cover system would not longer be a requirement and a 300mm growing medium (comprising 150mm topsoil and 150mm subsoil) would be nessacary.

The specific design and installation process for the appropriate cover systems will be clearly defined within the site remediation and enabling works strategy.

Chemical analysis of the natural drift deposits have identified these soils to be acceptable for use as subsoil within the proposed garden areas. In addition, topsoil at the site (with the exception of TP111 and TP123) will be suitable for reuse. Once the two minor hotspots have been removed from the topsoil at the site a cover system will not be nacassary as all the potential risk will be managed by this process. Following a topsoil scrape the clean natural stratum will be exposed and can be capped with 150mm (site generated) topsoil to finish the development.

4.2. CONTROLLED WATERS RISK ASSESSMENT

The site sensitivity with respect to controlled waters is summarised within Table 4.2.

TABLE 4.2 CONTROLLED WATERS SENSITIVITY PROFILE

RISK PROFILE	DISCUSSION	SENSITIVITY RATING
Groundwater Source Protection Zone or Drinking Water Safeguard Zone	The site is not within a designated groundwater source protection or drinking water safeguard zone.	Low
Distance to the Closest Groundwater Abstraction Point	Two groundwater abstractions are actively licensed 70 m south east of the site for general farming and domestic use registered to Bistre Farm and Mrs E Jones.	High
Aquifer Classification in Superficial Drift Deposits	Secondary Undifferentiated aquifer in the superficial drift deposits at the site. The natural cohesive deposits are likely to afford protection to the underlying bedrock aquifer.	Moderate
Aquifer Classification in Bedrock	A secondary A aquifer is noted in the bedrock strata. The cohesive overburden and limited potential to support groundwater on a strategic level reduces the overall risk.	Moderate
Viability for Anthropogenic Soil in Direct Contact with Aquifer (Drift or Bedrock)	Minimal Made Ground deposits (maximum depth of 0.50 m bgl) were identified during site investigations and therefore have not been found to be in direct contact with the underlying secondary A aquifer.	Low
Is the Site Located Within 50 m of a Surface Watercourse?	A pond is noted circa 50 m from the southern boundary however more recent imagery suggests this may now be silted up. A surface ditch is noted 50 m south east of the site.	Low

SUMMARY

The ICSM developed within the context of the site setting has only identified a single viable pollutant risk, which would be the downward migration of potentially mobile phase-soluble contaminants towards the underlying secondary A aquifer. A groundwater abstraction point is located 70 m south east; however, the overall sensitivity of this receptor is reduced given underlying cohesive deposits and limited contamination at the site and thus the potential for the creation of a complete pollutant linkage.

To further refine the ICSM, E3P has undertaken an initial qualitative assessment of the soil data analysis to assess the potential for a source of separate-phase or dissolved-phase contamination originating from either a defined on-site source or from impacted soils. This assessment is summarised in Table 4.3.

TABLE 4.3 QUALITATIVE RISK TO CONTROLLED WATERS FROM SOIL ANALYTICAL RESULTS

BTEX > 1 mg/kg	The soil data analysis has not identified any detectable concentrations of				
Total VOC > 1 mg/kg	TPH C5 to C6 that might otherwise be indicative of VOC impact				
Total SVOC > 1 mg/kg	PAH analysis recorded concentrations either below or only slightly elevated above the laboratory LOD				
C5-C10 > 5 mg/kg	All concentrations are below the laboratory LOD				
C10-C12 > 10 mg/kg	All concentrations are below the laboratory LOD				
C12-C16 > 50 mg/kg	All concentrations are below the laboratory LOD				
Phenols > 2 mg/kg	All concentrations are below the laboratory LOD				
Naphthalene > 2 mg/kg	The most soluble SVOC (naphthalene) has not been identified at concentrations above the limit of detection (0.05 mg/kg)				
Total PAH > 10 mg/kg	Concentrations of low-solubility PAH compounds greater than 10 mg/kg have not been detected in the soil analysis				
PCB > 1 mg/kg	No potential sources of PCB have been identified				
Heavy metals > 500 mg/kg	Concentrations of heavy metals are all below 500 mg/kg				

In due consideration of the ICSM, which has identified a potential pollutant linkage associated with the migration towards the underlying secondary A aquifer, E3P has undertaken a Tier I controlled waters risk assessment. The Tier I assessment has included a comparison of leachate analysis and groundwater samples to drinking water standards in the first instance and in absence of environmental quality standards (EQS).

These are presented in Table 4.4.

TABLE 4.4 COMPARISON OF GROUNDWATER ANALYSIS WITH TIER 1 SCREENING LEVELS

DETERMINANT	UNIT	EQS SCREENING VALUE ^{1, 2, 3}	DWS 3,4,5		N	мс	LOC. OF EX	ASSESSMENT
		AA		L	GW			
Arsenic	μg/l	50	10	3	3	<1.1	N/A	No Further Action
Cadmium	μg/l	0.08-0.25	5	3	3	<0.08	N/A	No Further Action
Chromium (VI)	μg/l	3.4	_	3	3	<5.0	N/A	No Further Action
Chromium (III)	μg/l	4.7	50	3	3	15	N/A	No Further Action
Copper	μg/l	1	2000	3	3	31	N/A	No Further Action
Total Cyanide	μg/l	1	50	3	3	<1.0	N/A	No Further Action
Lead	μg/l	1.2	10	3	3	4.1	N/A	No Further Action
Mercury	μg/l	_	1.0	3	3	<0.5	N/A	No Further Action
Nickel	μg/l	4	20	3	3	0.8	N/A	No Further Action
Selenium	μg/l	_	10	3	3	<4.0	N/A	No Further Action
Zinc	µg/l	10.9	_	3	3	48 15 14	WS111 (GW) TP128-0.10 (L) TP121-0.40 (L)	Further Assessment
рН		6-9		3	3	5.8- 5.9	TP128-0.10 (L) TP121-0.40 (L)	Further Assessment
РАН								
Naphthalene	μg/l	2		3	3	<0.01	N/A	No Further Action
Anthracene	μg/l	0.1		3	3	<0.01	N/A	No Further Action
Benzo[b]fluoranthene	μg/l	0.00017*		3	3	<0.01	N/A	No Further Action
Benzo[k]fluoranthene	μg/l	0.00017*		3	3	<0.01	N/A	No Further Action
Benzo(a)pyrene	μg/l	0.00017*	10*	3	3	<0.01	N/A	No Further Action
Indeno(123- cd)pyrene	μg/l	0.00017*		3	3	<0.01	N/A	No Further Action
Benzo(ghi)pyrene	μg/l	0.00017*		3	3	<0.01	N/A	No Further Action
Fluoranthene	μg/l	0.0063		3	3	<0.01	N/A	No Further Action
Benzo(ghi)perylene	μg/l	1.7-4		3	3	<0.01	N/A	No Further Action
TPH-Aromatic								
TPH C5-C6 (benzene)	μg/l	10	1	3	3	3.1	WS111 (GW)	Further Assessment
TPH C6-C8 (toluene)	μg/l	74	700	3	3	9	N/A	No Further Action
TPH C8-C10 (ethyl benzene)	μg/l	20	300	3	3	<1.0	N/A	No Further Action
TPH C10-C12 (xylene)	μg/l	30	500	3	3	<10	N/A	No Further Action

DETERMINANT	UNIT	EQS SCREENING VALUE ^{1, 2, 3}	DWS 3,4,5			МС	LOC. OF EX	ASSESSMENT
		AA		L	GW			
TPH C12-C16	μg/l	2	90 ⁵	3	3	<10	N/A	No Further Action
TPH C16-C35	μg/l	50#	90 ⁵	3	3	<10	N/A	No Further Action
TPH Aliphatic ⁵								
TPH C5-C6	μg/l	_	15000	3	3	<1.0	N/A	No Further Action
TPH C6-C8	μg/l	_	15000	3	3	<1.0	N/A	No Further Action
TPH C8-C10	μg/l	_	300	3	3	<1.0	N/A	No Further Action
TPH C10-C12	μg/l	_	300	3	3	<10	N/A	No Further Action
TPH C12-C16	μg/l	_	300	3	3	<10	N/A	No Further Action
TPH C16 - C21	μg/l	_	300**	3	3	<10	N/A	No Further Action
TPH C21-C35	μg/l	_	300**	3	3	<10	N/A	No Further Action
voc								
Tetrachloroethylene	μg/l	0.4	10	0	3	<1.0	N/A	No Further Action
Trichloroethylene	μg/l	10	10	0	3	<1.0	N/A	No Further Action
Trichlorobenzene	μg/l	0.4	_	0	3	<1.0	N/A	No Further Action
Trichloromethane	μg/l	2.5	_	0	3	<1.0	N/A	No Further Action
Dichloromethane	μg/l	20	200	0	3	<1.0	N/A	No Further Action
Carbon Tetrachloride	μg/l	12	3	0	3	<1.0	N/A	No Further Action
Vinyl Chloride	μg/l	_	0.3	0	3	<1.0	N/A	No Further Action

Solubility <0.01µg/l AA – Annual Average

- fractions inclusive of C8-C16 (300µg/l) has been applied.
- The Water Environment (Water Framework Directive) (England and Wales) (Amendment) Regulations (2015)
- Directive establishing a framework for Community action in the field of water policy (Water Framework Directive) 2.
- 3. Council Directive on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community (Dangerous Substances Directive) - List II substances
- Council Directive on the quality of water intended for human consumption (Drinking Water Directive) 4.
- WHO Guidelines for Drinking Water Quality. Third edition (2004)

CONTROLLED WATER RISK ASSESSMENT AND MITIGATION

This comparison indicates that the data exceeds the DWS values for the following inorganic compounds:

- Zinc
- TPH C5-C6 (benzene)
- рΗ

^{*} Polyaromatic hydrocarbons (PAH) - Benzo(a)pyrene (BaP), Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)-perylene and Indeno(1,2,3-cd)-pyrene. Benzo(a)pyrene can be considered as a marker for the other PAHs, hence only benzo(a)pyrene needs to be monitored for comparison with the biota EQS or the corresponding AA-EQS in water

** There are no WHO Guideline Values for aliphatic fractions C16-C21 and C21-C35, therefore the guideline value for aliphatic

It should be noted that the Tier I assessment criteria provides a conservative view, which may overstate the risk. Inorganic determinants identified above are of a general low solubility and therefore mobility, suggesting that these will not migrate to controlled water receptors.

Heavy metals have been identified in three samples positioned in two discrete low lying areas of the site. The low lying nature and prolonged periods of standing water could encourage decomposition of plant matter releasing zinc into the near surface and shallow groundwater. These areas are also low pH which encourages the bioavailability of zinc. Given the significant depth of low permeability cohesive strata through the site and absence of significant surface water features in the area surrounding the site this is considered to be a low risk to controlled waters and the wider environ.

Elevated levels of TPH C5-C6, as well as Toluene, Benzene, Phenol and Isopropyltoluene within WS111 can be also linked to varying quantities of Methylphenol identified within all three water samples. These semi-volitile/volatile hydrocarbons have a low solubility in water and can all be associated with a localised spill of oil/fuel/degreasing agents/pesticides that could all be linked to the agricultural uses and machinery utilised at the site. Given the low solubility and therefore low mobility in cohesive stratum beneath the site they are considered to be localised and a low risk. These contaminants do have a potential volatalisation risk associated, however, there is no significant source on or off site beyond those mentioned above. Due to the cohesive nature of the soils and the absence of VOCs in leachate analysis there is considered to be a low risk.

Given that the site is underlain by low-permeability, predominantly cohesive glacial till deposits, which will afford protection to the underlying secondary A aquifer, and in the absence of a groundwater abstraction within influencing distance of the site, there is considered to be a low risk to controlled waters and the wider environ as no complete pollutant linkage can be determined.

4.3. GROUND GAS

The potential impact on the development from ground gases has been assessed with reference to standards and guidelines published in CIRIA Report 665 – Assessing risks posed by hazardous ground gases to buildings (2007). However, it is recommended that the full ground gas assessment and recommended protection measures are agreed with the local authority prior to their adoption on site. Furthermore, all protection measures adopted should be validated by a suitably qualified engineer.

CIRIA C665 and NHBC Report No 10627-R01 provide assessments for carbon dioxide and methane based upon gas screening values (GSVs) utilising flow rates and concentrations. The site-based GSVs for steady state methane and carbon dioxide are based upon the following equation:

$$GSV = \frac{concentration (by vol)}{100} \times flowrate (1 / hr)$$

The GSVs within CIRIA C665 are based upon all buildings other than standard residential houses. The NHBC GSVs are based upon standard residential houses with precast concrete floors (block and beam). The CIRIA 665 report author (Steve Wilson) since provided further clarification regarding which guidance should be adopted for residential houses that have suspended cast in-situ concrete floor slab: for the avoidance of doubt, it was confirmed that the GSVs within the CIRIA 665 guidance should be adopted. The thresholds for GSVs based upon NHBC and CIRIA guidance are provided within Table 4.5.

TABLE 4.5 RESIDENTIAL THRESHOLDS FOR GAS SCREENING VALUES (GSV) IN ACCORDANCE WITH CIRIA C665 AND NHBS REPORT NO 10627-R01 – RESIDENTIAL END USE

CIRIA – NO SUBFLOOR VOID		NHBC - SUBFLOOR VOID			
CLASSIFICATION	GSV (METHANE AND CARBON DIOXIDE)	CLASSIFICATION	GSV (METHANE)	GSV (CARBON DIOXIDE)	
CS1	< 0.07	Green	< 0.13	< 0.76	
CS2	< 0.70	Amber 1	< 0.63	< 1.60	
CS3	< 3.5	Amber 2	< 1.60	< 3.10	
CS4	< 15	Red	> 1.60	> 3.10	
CS5	< 70	N/A	N/A	N/A	
CS6	> 70	N/A	N/A	N/A	

4.3.1. SOURCES OF GROUND GAS

The Phase I report and subsequent ground investigation has identified the following potential sources of ground gas:

Infilled ponds and field boundaires.

4.3.2. GROUNDWATER

Groundwater levels were observed to be low over the majority of locations with half the wells being dry on the initial visit. WS108 and WS112 were observed to have high water levels during the initial visit. These were set within a low-permeability clay stratum and groundwater may be a result of surface water collecting in the well rather than a measure of true groundwater.

4.3.3. GAS FLOW

During the monitoring a positive flow was noted within all locations. The measure of positive flow is considered to be the result of groundwater fluctuations and flooding of the well causing compression – as opposed to gas generation – as the highest flows are recorded during periods of high groundwater levels.

4.3.4. GAS CONCENTRATIONS

No elevated concentrations of methane were recorded within any of the remaining monitoring wells.

Carbon dioxide concentrations were recorded within all the monitoring wells at concentrations ranging from 0.60% v/v to 7.20% v/v (WS108). The maximum carbon dioxide levels were also associated with low oxygen concentrations and appear to be associated with natural stratum, identified in WS108.

4.3.5. GAS ASSESSMENT

In accordance with the methodology outlined with the CIRIA publication C665, E3P have utilised the results of the ground gas monitoring surveys to calculate a tentative gas screening value (GSV). The GSVs for the monitoring positions are summarised in Table 4.6.

TABLE 4.6 GAS RISK PROFILE AND LOCATION

LOCATION	MAX CH ₄ (% v/v)	GSV (I/hr)	MAX CO ₂ (% v/v)	GSV (I/hr)	CLASSIFICATION
WS101	0.10	0.00052	0.60	0.00312	Green/CS1
WS102	0.10	0.00096	2.20	0.02112	Green/CS1
WS103	0.10	0.00026	0.70	0.00182	Green/CS1
WS104	0.10	0.00026	2.80	0.00728	Green/CS1
WS105	0.10	0.00026	3.70	0.00962	Green/CS1
WS106	0.10	0.00052	0.60	0.00312	Green/CS1
WS107	0.10	0.00026	1.90	0.00494	Green/CS1
WS108	0.10	0.00013	7.20	0.00936	Amber 1/CS2
WS109	0.10	0.00010	2.20	0.00220	Green/CS1
WS110	0.10	0.00340	1.70	0.05780	Green/CS1
WS111	0.10	0.00176	4.60	0.08096	Green/CS1
WS112	0.10	0.00180	1.80	0.03240	Green/CS1

The GSV has been compared to the criteria outlined with CIRIA C665 to determine the level of risk to the proposed development and to ensure the appropriate remedial options are incorporated into any future building design in this area.

Preliminary ground gas monitoring suggests that the site can be predominantly classified as CS1, and in these areas it is considered that gas protection measures will not be required. However, a localised area of the site have been assessed as being CS2 and properties within this area may require specialist protection measures as detailed below.

Elevated Carbon Dioxide is present marginally above 5% v/v within one borehole (WS108). This presence of carbon dioxide in glacial clays is relatively common, with reference as a potential source where mitigation measures would not be required within BS8485 (Annex D), and in more detail within CIEH (2008). The references of the presence of carbon dioxide generated from natural carbonate materials within glacial clays is detailed as: "Carbon dioxide produced by natural soils at very low rates can nevertheless result in elevated concentrations within monitoring wells and be present in wells installed in soils or rocks that include carbonate content such as chalk and limestone or clay with chalk gravel."

Consideration should be given to the monitoring results which are marginally above 5% v/v and as stated within above, NHBC indicate that only typical concentration of 10% can be classified as Amber 1. Furthermore, the absence of notable methane confirms there are no anthropogenic sources currently promoting gas release.

Upon completion of the full phase of ground gas monitoring at the site, it may be possible to appropriately regard the site as Characteristic Situation 1 and plots within the proposed future development may not require the installation of ground gas mitigation measures.

4.4. RESIDENTIAL BUILDING GAS RISK MITIGATION

British Standard BS8485 (2015)+A1(2019) provides two types of residential property that require assessment. These building types are:

- Type A Building Private ownership with no building management controls on alterations to the internal structure, the use of rooms, the ventilation of rooms or the structural fabric of the building. Some small rooms are present. Probably conventional building construction (rather than civil engineering). Examples include private housing and some retail premises.
- Type B Building Private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small- to medium-sized rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels.

Based on the ground gas risk assessment and the proposed Type A Building, it is envisaged that a point score of 3.5 will be required for affected properties, as summarised in Table 4.7.

TABLE 4.7 BS 8485 (2015) POINTS REQUIRED FOR TYPE A AND TYPE B BUILDINGS

CHARACTERISTIC	NHBC TRAFFIC LIGHT	MINIMUM GAS PROTECTION SCORE (POINTS)				
SITUATION	SYSTEM	HIGH SENSITIVITY				
		TYPE A BUILDING	TYPE B BUILDING			
1	Green	0	0			
2	Amber 1	3.5	3.5			
3	Amber 2	4.5	4			
4	Red	6.5	5.5			
5	N/A	N/A	6.5			
6	N/A	N/A	N/A			

Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, for example, high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the gas control system such as in institutional and/or fully serviced contractual situations.

The requisite 3.5 points must be achieved by installation of a suitable combination of measures detailed in Table 4.8.

TABLE 4.8 SUMMARY OF GROUND GAS MITIGATION MEASURES – BS8485 (2015)+A1(2019)

GAS PROTECTION SCORES FOR THE STRUCTURAL BARRIER	SCOREA
Floor and Substructure Design	
Precast Suspended Segmental Subfloor (Beam and Block)	0
Cast In-Situ Ground-Bearing Floor Slab (With Only Nominal Mesh Reinforcement)	0.5
Cast In-Situ Monolithic Reinforced Ground-Bearing Raft or Reinforced Cast In-Situ Suspended Floor Slab With Minimal Penetrations	1 or 1.5 ^B
Basement Floor and Walls Conforming to BS 8102:2009, Grade 2 Waterproofing ^C	2
Basement Floor and Walls Conforming to BS 8102:2009, Grade 3 Waterproofing ^C	2.5

A) The scores are conditional on breaches of floor slabs, etc. being effectively sealed.

c) The score is conditional on the waterproofing not being based on the use of a geosynthetic clay liner waterproofing product (see **C.3**, Note 4).

PROTECTION ELEMENT SYSTEM	1	SCORE	COMMENTS			
Gas protection scores for ventilation protection measures						
(a) Pressure Relief Pathway – Usually formed of low fines gravel or with a thin geocomposite blanket or strips terminating in a gravel trench external to the building.			Whenever possible a pressure relief pathway (as a minimum) should be installed in all gas protection measures systems. If the layer has a low permeability and/or is not terminated in a venting trench (or similar), then the score is 0.			
(b) Passive Subfloor Dispersal	Very good performance	2.5				
Layer – Media used to provide the dispersal layer are:			The ventilation effectiveness of different media depends on a number of different factors including the			
© Clear void;			transmissivity of the medium, the width of the building, the side			
Polystyrene void former blanket;			ventilation spacing and type and the thickness of the layer. The selected			
Geocomposite void former blanket;	Good performance	1.5	score should be assigned taking into account the recommendations in Annex B of BS 8485 (2015).			
No-fines gravel layer with gas drains; and			Passive ventilation should be designed to meet at least "good performance".			
No-fines gravel layer.			performance.			

B) To achieve a score of 1.5 the raft or suspended slab should be well reinforced to control cracking and have minimal penetrations cast in (see **A.2.2.2**).

PROTECTION ELEMENT SYSTEM	SCORE	COMMENTS
(c) Active Dispersal Layer – Usually comprising fans with active abstraction (suction) from a subfloor dilution layer with roof-level vents. The dilution layer may comprise a clear void or be formed of geocomposite or polystyrene void formers.	1.5 to 2.5	This system relies on continued serviceability of the pumps, therefore alarm and response systems should be in place. There should be robust management systems in place to ensure the continued maintenance of the system, including pumps and vents. Active ventilation should always be designed to meet at least "good performance".
(d) Active Positive Pressurisation – Provided by the creation of a blanket of external fresh air beneath the building floor slab by pumps supplying air to points across the central footprint of the building into a permeable layer, usually formed of a thin geocomposite blanket.	1.5 to 2.5	This system relies on continued operation of the pumps, therefore alarm and response systems should be in place. The score assigned should be based on the efficient "coverage" of the building footprint and the redundancy of the system. Active ventilation should always be designed to meet at least "good performance".
(e) Ventilated Car Park – Floor slab of occupied part of the building under consideration is underlain by a basement or undercroft car park.	4	Assumes that the car park is vented to deal with car exhaust fumes, designed to Buildings Regulations 2000, Approved Document F [9].

PROTE	CTION ELEMENT SYSTEM	SCORE	COMMENTS	
Gas-re- following	sistant membrane meeting all of the ng criteria: Sufficiently impervious to the gases with a methane gas transmission rate < 40.0 ml/day/m²/atm (average) for sheet and joints (tested in accordance with BS ISO 15105-1 manometric method); Sufficiently durable to remain serviceable for the anticipated life of the building and duration of gas emissions; Sufficiently strong to withstand in-service	SCORE	The performance of membranes is heavily dependent on the quality and design of the installation, resistance to damage after installation and integrity of joints. For example, a minimum 0.4 mm	
0	stresses (e.g. settlement if placed below a floor slab); Sufficiently strong to withstand the installation process and following trades until covered (e.g. penetration from steel fibres in fibre-reinforced concrete, penetration of reinforcement ties, tearing due to working above it, dropping tools); Capable, after installation, of providing a	2	thickness (equivalent to 370 g/m² for polyethylene) reinforced membrand (virgin polymer) meets the performance criteria opposite. If a membrane is installed that doe not meet all the criteria opposite, the the score is 0.	
©	complete barrier to the entry of the relevant gas; and Verified in accordance with CIRIA C735.			

4.5. POTABLE WATER SUPPLY

This section provides a summary of the site investigation data with reference to the selection of potable water supply pipework. The assessment is made with reference to the UK Water Industry Research (UKWIR) publication "Guidance on the selection of Water Supply Pipes to be used in Brownfield Sites"

TABLE 4.9 PIPELINE SELECTION PETHRESHOLD CONCENTRATIONS

Contaminant Group	PE-threshold (mg/kg)	Concentrations at Current pipeline depth (mg/kg)	
Total VOC	0.5	N/A	
Total BTEX And MTBE	0.1	N/A	
Total SVOCs (Excluding PAH and those substances marked with an *)	2	N/A	
EC5-EC10 Aliphatic and Aromatic Hydrocarbons	2	<1.0	
EC10-EC16- Aliphatic and Aromatic Hydrocarbons	10	<4.0	
EC16-EC40 Aliphatic and Aromatic Hydrocarbons	500	<10	
Phenols (From SVOC Analysis)*	2	N/A	
Cresols and Chlorinated Phenols (From SVOC Analysis)	2	N/A	
Ethers*	0.5	N/A	
Nitrobenzene*	0.5	N/A	
Ketones*	0.5	N/A	
Aldehydes*	0.5	N/A	
Amines	Fail	N/A	
Other Consideration			
Are there any exceedances of the PE threshold outside of the pipeline depth?	None		
Is free product present in soil and groundwater?		None	
Could hydrocarbon impact at greater depth than current pipeline depth be mobilised by rising groundwater levels?		drocarbon impact and low as been identified within apleted to date.	
Will soils impacted with above determinands likely be utilised elsewhere on site?	No		
Will soils be imported to site as part of any future earth works	A cut/fill will be required as part of a phase of enabling works. Where a shortfall of site won materials exists the importation of materials may affect the WIR Risk Assessment which should be updated after completion.		

Notes - Pipe line depth normally between 0.75m-1.35m

Based on the assessment of current site conditions it is likely that polyethylene (PE) pipe will be suitable at the proposed development.

4.6. CONCEPTUAL SITE MODEL

Following the completion of the intrusive site investigation, chemical analysis and risk assessment, the conceptual model shown in Table 4.10 has been prepared for the site.

TABLE 4.10 CONCEPTUAL MODEL

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL1	Dermal contact.	Future site users.	Heavy metals (in			
PL2	Dermal contact and ingestion.	Off-site receptors.	Topsoil)	Likely	Low	LOW

Discussion:

Heavy metals (Lead) identified in discrete locations between depths of 0.10m and 0.40m.

Recommendation:

Given the isolated occurrence and limited sources on site the impacted materials should be excavated and placed in low future sensitivity area of the site. Where this is completed cover system to garden and landscaped areas will not be required.

Construction works completed with suitable PPE and provision of welfare.

Volatile Contaminants such as hydrocarbons, solvents, (spills/leaks)	Inhalation of vapours. Migration through permeable strata and preferential pathways.	Future site users. Off-site receptors.	Likely	Low	LOW
--	---	--	--------	-----	-----

Assessment:

Benzene (TPH C5-6) and methylphenol has been identified (WS111) which has a potential volatolisation risk. Considered to be an isolated occurrence localised in this area. Given the volumes identified and absence of a source not considered to be a significant risk.

Recommendation:

N/A

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL5	Methane, carbon dioxide (Infilled features – hedgerow/low areas)	Inhalation of gas. Migration through permeable strata and preferential pathways. Explosion in confined spaces.	Future site users. Buildings. Off-site land users.	Low likelihood	Moderate	LOW

Assessment:

Current assessment based on initial monitoring visit confirms one area of the site (WS108) identifies levels of CO2 that would require CS2/Amber 1 classification. Given the absence of a significant source in this area it is likely that this is the degretation/decomposition of carbonate minerals within the natural stratum.

Recommendation:

The full phase of ground gas monitoring should be completed to inform the full and detailed assessment and therefore level of risk. Currently an allowance for CS2/amber 1 mitigation measures should be retained.

Mobile contaminants as metals hydrocarbo volatile comp (spills/leal	and preferential pathways.	Groundwater (secondary A aquifer). Surface water (Ponds surrounding site and River Alyn).	Low Likelihood	Low	LOW
--	----------------------------	--	----------------	-----	-----

Assessment:

Low Likelihood as potentially mobile contamination has been identified yet glacial till across the site may reduce downward migration into the underlying bedrock aguifer and in the absence of a significant source on site and/or significant receptor within influencing distance the risk is considered low.

Recommendation:

No risk to controlled waters has been identified in the absence of a viable receptor and significant source of contaminants.

Phase II Geoenvironmental Site Assessment October 2020

POLLUTANT LINKAGE	CONTAMINANT (SOURCE)	PATHWAY	RECEPTOR	PROBABILITY	CURRENT RISK	RESIDUAL RISK AFTER MITIGATION
PL6	Sulphate (limited Made Ground)	Sulphate attack on concrete.	Building structure.	Unlikely	Low	LOW

Assessment:

Assessment completed based on soil samples obtained during the site investigation confirms DS-1 AC-1s concrete classification will be required in the future development.

Recommendation:

Utilise DS-1 AC-1s concrete classification within subsurface concrete.

Organic contaminants such as hydrocarbons, solvents (spills/leaks)	Ingestion of tainted water supply.	Future site users. Water pipes.	Unlikely	Low	LOW
--	------------------------------------	---------------------------------	----------	-----	-----

Assessment:

Unlikely probability as significant contamination has not been identified at pipeline depth across the site (0.75–1.35 m).

Recommendation:

Completion of UKWIR assessment to confirm the required pipeline materials post remediation works. Currently polyethylene pipeline is considered to be sufficient.

	Phytotoxic contaminants (Made Ground/spills/leaks)	Direct Contact (plant uptake).	Flora.	Likely	Low	LOW
--	--	--------------------------------	--------	--------	-----	-----

Assessment:

Likely probability as contamination has been identified in the near surface.

Recommendation:

Excavation and placement of impacted materials in an area of low risk within the future development or alternatively cover system required within private gardens in this area of the site.

Main exposure pathways:

PL1 = soil ingestion, PL2 = dermal contact and ingestion, PL3 = vapour inhalation (indoor), PL4 = dust inhalation; PL5 = Vertical/lateral migration;

PL6 = Corrosion of concrete; PL7=Tainting of water supply; PL8 = Uptake by plants

5. GEOTECHNICAL ASSESSMENT

5.1. PROPOSED DEVELOPMENT

E3P understands that the proposed development will comprise a residential end use of 154 units (through a mix of apartment, detached, semi-detached, terraced property) with associated estate roads, utility infrastructure, private gardens and areas of landscaping.

5.2. SUMMARY OF GROUND CONDITIONS

- Made Ground Made Ground has been identified in two discrete areas of the site (TP121-0.50 and TP123-0.30) as reworked topsoil with clay pipe fragments and as reworked natural clay with fragments of a land drain present. Not considered significant sources of potential contaminants and are likely due to agricultural practices at the site. The full depth of Made Ground has been proven in both instances.
- Topsoil Topsoil has been identified in all exploratory locations with the exception of the two Made Ground areas. Topsoil is encountered as a slightly gravelly sandy clay with frequent rootlets and gravel of fine to coarse subangular to subrounded mudstone. Topsoil has been identified to depths between ground level and 0.30m bgl.
- Drift Natural drift deposits have been identified within all exploratory locations. Predominantly throughout the site a gravelly sandy CLAY with gravel of mudstone and sandstone is identified. Clay stratum has been noted as highly friable and so hand shear vane tests could not be completed in some cases. Occasionally a grey gravel of mudstone is identified at the base of excavations (TP116, TP117, TP121, WS105, WS106 and WS106A) circa 2.00-3.00m bgl and within RBH103 between 4.00m and 7.60m bgl indicative of weathered bedrock. In rare locations (TP120, 124, WS110, RBH102 and RBH105) a clayey sand is identified at similar depths. Within the previous site investigation a 'highly localised' area of peat was identified to the south west of the site. E3P advanced a number of locations in this area that has not identified peat.
- Solid The solid bedrock geology was identified throughout the site in rotary positions at depths between 3.30m and 8.10m bgl. Bedrock was identified as interbedded grey siltstone, sandstone and mudstone with occasional marl. Bedrock strata was encountered to a maximum proven depth of 30.00m bgl.
- Groundwater Groundwater strikes were encountered as seepages between 2.00m bgl and 4.00m bgl.

5.3. SITE PREPARATION

The site should be cleared and any vegetation below areas of proposed development stripped in accordance with Series 200 of the *Manual of Contract Documents for Highway Works (MCHW)*. This should include the following:

- Removal of hedgerows and trees (as required).
- Roots present below the footprint of proposed structures and infrastructure should be grubbed out and the resulting void infilled with suitable compacted engineered fill.

October 2020

- Redundant services should be sealed off and grubbed out and replaced with suitable compacted engineered fill.
- Buried structures and old foundations have not been encountered on site but any obstructions identified during the works should be excavated from below the proposed development footprint with the resulting void backfilled.

FOUNDATION CONDITIONS AND ASSESSMENT OF POTENTIAL 5.4. **BEARING CAPACITIES**

In due consideration of the identified ground conditions, in-situ and laboratory geotechnical testing, E3P has undertaken an assessment of the net safe allowable bearing pressure (ABP) within the underlying natural stratum to assist in the detailed design of foundations and infrastructure and determine the target founding stratum. The results of this assessment are summarised in Table 5.1.

TABLE 5.1 SUMMARY	OF ABPS		
	GRANUL	AR SOILS	
Description	Depth (Range m bgl)	Relative Density	Allowable Bearing Pressure (kN/m²)
GRAVEL	2.00-3.00	Dense	438-456
GRAVEL	3.60	Delise	426
	COHESI	VE SOILS	
Description	Depth (range m bgl)	Undrained Shear Strength (Cu) (kN/m²)	Allowable Bearing Pressure (kN/m²)
	1.00-1.45	70-120	145-248
	2.00-2.45	77-150	159-309
	2.50-3.00	218-219	448-450
Gravelly slightly sandy CLAY	3.00-3.45	91-217	187-447
	3.50-4.00	213	438
	4.00-4.45	114-211	234-434
	5.00-5.45	87-141	179-289
Soft gravelly silty CLAY (TP111)	0.80-1.20	38-42	89-98

Based on the assessment of the relative undrained shear strength, relative in-situ densities and corresponding safe net allowable bearing pressure, the suitable target founding stratum has been identified as the underlying stiff to very stiff glacial clays and localised areas of dense gravel.

However, given the significant topographical variances on the site, prior to the detailed design of suitable foundations solutions, a programme of remediation and enabling works will be required to cut/fill the site to provide suitable development platform levels.

The exception to this would be in the location of TP111 where soft clay has been identified (also in the area of previously identified peat). In this location it is likely that a deep mass trench fill solution would be required.

Therefore, upon completion of these enabling works, it is likely that the most cost effective option for the majority of the site would be a shallow strip or spread foundation and depending on upfill levels and therefore resulting depth of newly placed Made Ground a mass trench fill solution or driven pile solution (given the potential tree influence) to support a reinforced strip foundation.

Foundation depths should take account of the presence of existing and proposed trees, with foundations deepened locally to mitigate the potential for volumetric instability attributed to fluctuations in moisture content, in accordance with the requirements of NHBC standards.

It is recommended that at working drawing stage a foundation schedule is prepared for the development, taking account of the physical change of natural clay soils and the current/proposed locations of trees.

TABLE 5.2 ANTICIPATED FOUNDATIONS

LOCATION	ANTICIPATED FOUNDING STRATA DEPTH (m bgl)	GROUND WATER (m bgl)	TARGET STRATUM	TREES	FOUNDATION TYPE	TYPE OF CONCRETE
WS101	0.75	3.00	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS102	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS102A	1.15	4.00	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS103	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS104	0.96	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS105	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS106	0.95	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS106a	0.95	2.50	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS107	0.95	N/A	Stiff CLAY	Υ	Shallow Strip	DS-1 AC-1s
WS108	0.95	3.00	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS109	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS110	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS111	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
WS112	0.95	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP101	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP102	0.75	N/A	Stiff CLAY	Υ	Shallow Strip	DS-1 AC-1s
TP103	1.15	N/A	Stiff CLAY	Υ	Shallow Strip	DS-1 AC-1s
TP104	1.15	N/A	Stiff CLAY	Υ	Shallow Strip	DS-1 AC-1s
TP105/SA101	1.15	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP106/SA102	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP107/SA103	1.15	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s

LOCATION	ANTICIPATED FOUNDING STRATA DEPTH (m bgl)	GROUND WATER (m bgl)	TARGET STRATUM	TREES	FOUNDATION TYPE	TYPE OF CONCRETE
TP108/SA104	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP109	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP110	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP111	2.45	N/A	Stiff CLAY	N	Deep MTF/Pile	DS-1 AC-1s
TP112	0.85	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP113	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP114	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP115	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP116	0.75	3.20	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP117	0.85	2.00	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP118	0.75	N/A	Stiff CLAY	Υ	Shallow Strip	DS-1 AC-1s
TP119	0.85	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP120	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP121	0.95	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP122	0.95	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP123	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP124	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP125	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP126	0.75	N/A	Stiff CLAY	Υ	Shallow Strip	DS-1 AC-1s
TP127	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP128	0.75	N/A	Stiff CLAY	Υ	Shallow Strip	DS-1 AC-1s
TP129	0.75	N/A	Stiff CLAY	N	Shallow Strip	DS-1 AC-1s
TP130	0.95	N/A	Stiff CLAY	Υ	Shallow Strip	DS-1 AC-1s

It is recommended that, at working drawing stage, a foundation schedule is prepared for the development taking account of the physical change of natural clay soils and the current/proposed locations of trees and the required design levels through the site.

At this time it is not possible to accurately define the foundation types due to the absence of a detailed tree survey and final development levels; however, based on our extensive experience of similar sites, we would anticipate that the final foundation solution would be a combination of the following:

- Shallow strip foundations bearing on firm to very stiff gravelly CLAY at circa 1 m bgl; and
- Trench fill to support reinforced strip foundations in areas of variable ground and/or potential tree influence.

Well Street, Buckley

Phase II Geoenvironmental Site Assessment October 2020

Driven pile (over VSC given tree influence) for less than 5% of the site (currently) to support a reinforced strip footing in areas of poor ground.

A conceptual foundation zoning plan is included as Drawing 14-278-009 in Appendix III.

5.5. GROUND FLOOR SLABS

Current building control regulations require that where infilled ground is present to depths in excess of 600 mm, or where the substratum is variable in terms of the structure and settlement potential, or where clay soils are present within the influence of existing or proposed trees, a suspended floor slab is required.

In this instance, it is considered that for the majority of substructures, the underlying stratum would have in excess of 600 mm of cohesive strata and, as such, a suspended floor slab will be required.

Where a cast in-situ suspended slab is utilised with no subfloor void, appropriate compressible material (heave precautions) will be required in the construction of the substructure with specialist design.

5.6. HEAVE PRECAUTIONS

The site has been proven to be underlain by clay soils, which are susceptible to volumetric instability due to fluctuations in moisture content, particularly within influencing distance of trees as per the NHBC/LABC conjectured zones of influence.

As the clay is deemed to be low plasticity, heave precautions are not required to the internal face of the external load-bearing walls (outside or within tree influence).

If a ground beam is to be constructed within the zone of tree influence, heave precautions are required to the underside of this and edge beams.

If the ground floor slab is to be constructed with a beam and block floor, a minimum subfloor void of 200 mm is required within any structures located in the zone of conjectured tree influence.

If the ground floor slab is constructed with a cast in-situ suspended floor slab, then heave precautions that can tolerate 50 mm of clay swelling are required within any part of the floor slab to be located within the zone of influence of a tree.

A summary of heave precautions is presented in Table 5.4.

TABLE 5.4 SUMMARY OF HEAVE PRECAUTIONS

	MINIMUM VOID DIMENSIONS UNDER PRECAST CONCRETE AND SUSPENDED TIMBER FLOORS			
Plasticity Index of Soil	Required Foundation Depth (m)	Thickness of Void Former Against Side of Foundation or Ground Beam (mm) Thickness of Void Former on Underside of Edge Beam and Floor Slab (mm)		Void Dimension (mm)
High	> 2.5	Engineer	Design	Engineer Design
Plasticity	2.0-2.5	35	150	300
(> 40)	1.5-2.0	25	75	300
Moderate	> 2.5	Engineer	Design	Engineer Design
Plasticity	2.0-2.5	25	100	250
(20-40)	(20–40) 1.5–2.0		50	250
Low	Low 2.0-2.5 N/A 50		50	
Plasticity (< 20)	> 2.0	No Special P	200	

5.7. HIGHWAYS CONSTRUCTION

A programme of remediation and enabling works will be required to remediate the proposed road subgrade in accordance with the requirements of the Manual of Contract Documents for Highway Works Volume 1 Specification For Highway Works (Series 600-Earthworks) for a method compaction.

It is considered that the material can be re-engineered using method compaction to achieve a CBR in excess of 5% if works are completed in favourable climatic conditions.

5.8. DRAINAGE

Following the potential upfill in required in some areas of the site the presence of newly placed Made Ground may result in settlement. It is therefore recommended that drain runs are designed using steeper gradients and flexible joints to allow for some differential settlement.

Shallow bedrock identified between 3.30m and 8.10m bgl may impede excavations to install drainage and should therefore be considered in the design.

Furthermore, the site is predominantly underlain by circa 1–2 m of likely low-permeability gravelly CLAY. Completion of four soakaway tests during the site investigation confirmed this stratum to have a low permeability coefficient and therefore is unlikely to support significant soakaway drainage.

If soakaway drainage is to be considered, the BRE 365 testing completed to date must be used to inform the specialist detailed design.

Phase II Geoenvironmental Site Assessment October 2020

5.9. CONCRETE DURABILITY

Based upon the results of the chemical analyses it is considered that subsurface concrete can be designed in accordance with Design Sulphate Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with the recommendations provided in BRE Special Digest 1 (2005).

5.10. EXCAVATIONS

Trial pits were generally stable in both shallow Made Ground and natural strata; as such, it is considered that near-surface excavations will be feasible.

Site observations indicated that excavations should be feasible in the near surface with normal plant as obstructions were not identified. It is anticipated that any obstructions are unlikely but will be grubbed out during the reduced-level dig for the substructure works.

It is recommended that all excavations are supported or battered back in accordance with guidance contained in CIRIA R97.

If local pumping of groundwater is required during the advancement of excavations for the proposed foundations then consideration should be given to the potential for dewatering gravels in the surrounding areas that may cause structural damage to building substructures in close proximity to the site.

TABLE 5.5 CIVIL ENGINEERING EXCAVATION RISK MATRIX

RISK ITEM	PRESENT	COMMENT	
Running Sands	No	No running sand has been identified.	
Minor Water Ingress	Yes	Minor water ingress will require localised dewatering/sump pumping during the construction of site drainage infrastructure. Ingress of water into foundation excavation will potentially flood foundation excavations, limiting the viability of spread foundations to be constructed.	
Shallow Bedrock	Yes	Shallow bedrock has been identified within the north and central sectors at depths of between 3.30m and 8.10m below current ground levels. The presence of bedrock will impede excavation for drainage infrastructure using traditional excavation plant and equipment.	

5.11. COAL MINING RISK ASSESSMENT AND RECOMMENDATIONS

A detailed coal mining risk assessment has been undertaken due to the identified presence of shallow coal mining (potential shallow workings) on site and in the immediate surrounding area.

5.11.1. COAL MINING GEOLOGY

TABLE 5.6 COAL MINING GEOLOGY

COAL SEAM	THICKNESS	OUTCROP	DEPTH
Half Yard Carl	450mm	Mapped cutting through the southern tip of the site	Unknown
Premier	530 mm	Cutting the site E-W	Unknown

A review of the mining geology confirmed the presence of both seams as a subcrop within the site dipping north towards the site boundary inferred from geological records of the wider area. The CA do not record a definitive seam outcrop at this position.

5.11.2. RECORDED COAL AUTHORITY WORKINGS

The Coal Authority consultants report does not note any recorded workings however, the online interactive mapping notes the presence of a number of shafts in the 1km surrounding the site.

TABLE 5.7 RECORDED COAL AUTHORITY WORKINGS

FEATURE	LOCATION	REFERENCE	COMMENT
Shaft	~210m North	326363-311	No detail currently available
Shaft	~297m East	327363-036	No detail currently available

5.11.3. SCOPE OF INTRUSIVE GROUND INVESTIGATION

In due consideration of the potential presence of a subcrop within the Premier Coal Seam and an area of potential shallow mine workings within the site (transecting east/west), a series of rotary boreholes have been advanced in accordance with Coal Authority Permission ref: 20588 to assess the potential presence of shallow workings within this seam and the potential for ground instability to induce a future subsidence event within the proposed development.

5.11.4. SUMMARY OF GROUND INVESTIGATION WORKS

ROTARY BOREHOLES TO INVESTIGATE WORKINGS IN COAL

Six rotary boreholes have been advanced at the locations detailed within the E3P exploratory borehole location plan (Ref 14-278-005, Appendix III) at positions to interject the potential coal seams and assess the potential for any workings.

TABLE 5.8 ROTARY BOREHOLES

ROTARY BOREHOLE	DEPTH TO ROCKHEAD (m bgl)	DEPTH TO COAL (m bgl)	EVIDENCE OF MINING ACTIVITY/SEAM	REMARKS
RB101	3.40	N/A	N/A	
RB102	8.10	N/A	N/A	No loss of flush or
RB103	7.60	N/A	N/A	broken drilling
RB104	3.30	N/A	N/A	

ROTARY BOREHOLE	DEPTH TO ROCKHEAD (m bgl)	DEPTH TO COAL (m bgl)	EVIDENCE OF MINING ACTIVITY/SEAM	REMARKS
RB105	6.90	N/A	N/A	No loss of flush or
RB106	3.80	N/A	N/A	broken drilling

5.11.5. SUMMARY OF COAL MINING ISSUES

E3P has reviewed the BGS geological mapping and CA information, in addition to completing six 30 m rotary boreholes to investigate shallow mine workings. A summary of the findings follow.

- The intrusive ground investigations comprising six, deep, rotary boreholes did not identify any shallow coal seams
- Those locations also did not provide evidence of historic mine workings to the base of the boreholes (30m bgl).
- Given the potential seam thickness ~530mm there is sufficient rock thickness above and workings at greater depth (>30m bgl) to achieve a 10x seam thickness standard within Ciria 758 guidance

In the absence of evidence suggesting worked seams are present beneath the site and where 10x seam thickness has been identified it is considered that there is a low risk to the site from any subsurface histioric mining activities. No further assessment is required.

5.12. FURTHER WORKS

Based on the findings of the intrusive site investigation, the following additional works are recommended to be completed in due course:

- Plot-specific foundation schedule (upon receipt of the final development levels);
- Materials management plan;
- Geotechnical earthworks strategy (infrastructure);
- Remediation and enabling works strategy; and
- Full three-dimensional earthworks cut/fill model.

5.13. CONSTRUCTION ACTIVITY AND INSPECTION

The following activities and inspections should be incorporated in to the site works:

- Due to the variability of the soils at the site, it is recommended that sufficient allowance is made for the inspection of formations and subformations to foundations and pavement construction.
- Excavations where access is required should be subject to a risk assessment from a competent person and, where appropriate, mitigation measures such as benching back the sides or use of support systems in accordance with CIRIA R97 should be utilised.

Well Street, Buckley

Phase II Geoenvironmental Site Assessment October 2020

- It is considered that dewatering may be required, especially following periods of heavy rainfall. Removal of surface water and water within trenches should be possible with conventional sump pumping. Discharge of any water should be agreed with the relevant regulatory body and be undertaken under a trade effluent discharge, where required. Measures to remove silt and suspended solids may be required and consideration should be given to provision of space for settling tanks or an attenuation pond.
- Where access to confined spaces is required, appropriate mitigation measures should be addressed within the construction stage health and safety plan. Particular account should be taken of the gas results.
- The presence of potential contamination and mitigation measures should be addressed as part of the construction stage health and safety plan and should include measures to design out the risks, reduce their impact and, finally, to include the use of personnel protective equipment (PPE).

5.14. GEOTECHNICAL RISK REGISTER

POTENTIAL ABNORMAL CONSTRAINT	LOCATION ON SITE	ESTIMATED AREA OF SITE AT RISK (%)	ASSESSMENT AND MITIGATION
Remediation of contaminated soils	On site	5%	Discrete locations (TP111, TP128, TP121 and TP123) have identified heavy metals contaminant exceedances. Material deemed to have a potential vapour risk may require hotspot removal, resulting the requirement to backfill the resulting void. Should significant backfill be needed deeper or specialist foundations may be required in those areas.
Bedrock	Throughout	0	Bedrock has been identified at depths between 3.30m and 8.10m through the site. Dependant on the excavation depth required for utilities/foundations the bedrock may present an obstruction in certain areas. E3P has produced a depth to Bedrock plan (14-278-012, Appendix III).
Obstructions	N/A	-	No development has taken place at the site and as such underground obstructions are not expected. In addition none were identified during the ground investigation completed at the site.
Artificially levelled and filled platforms	N/A	-	The site is considered to follow the natural landform. No Made Ground evident of upfilling was identified.
Retaining walls	N/A	-	None Identified.
Trench collapse	N/A	-	Shallow Made Ground and natural strata encountered were identified to be stable and not susceptible to trench collapse.
Infilled canal	N/A	-	N/A
Mature trees	Periphery	<5%	Arboriculture survey has previously been completed by others. Sporadic mature trees and hedgerows are present surrounding the site and bisecting the sith north-south through the centre.
Volume change potential clay	On site	100	Assessment of the cohesive strata beneath the site confirms low volume change potential.

Phase II Geoenvironmental Site Assessment October 2020

POTENTIAL ABNORMAL CONSTRAINT	LOCATION ON SITE	ESTIMATED AREA OF SITE AT RISK (%)	ASSESSMENT AND MITIGATION	
Peat	South East	<1%	Peat was identified within the previously completed site investigation to the south east of the site. E3P locations in this area did not identify the same ground conditions despite extensive intrusive investigation in this area.	
Running sands	N/A	N/A	Data searches indicate low risk.	
Ground dissolution	N/A	N/A	Data searches indicate no hazard.	
Concrete design	Throughout	-	Assessment of soils identified at the site confirms the concrete classification should be DS-1 AC-1s.	
Low-permeability ground	On site	100	Soakaways completed during the E3P site investigation has identified low permeability cohesive deposits through the site not likely to be suitable for sustainable drainage solutions. The ultimate use of such a system will be dependent on the requirements of the site and a specialist design.	
Services/sensitive structures	Site boundaries	5%	A review of online services has identified a number of services within the site boundary which should be considered sensitive in this case. Piling may not be possible within close proximity to any sensitive infrastructure.	
Abnormal foundation solutions	Throughout site	<10%	Intrusive investigation confirms low volume change potential firm to stiff cohevise materia through the site. Where trees are present, and where excavation is required to manage contaminant issues a deeper foundation solution may be required.	
Areas not investigated	N/A	-	N/A	
Surface water features	N/A	-	None present	
Current ponds to be filled	N/A	-	None present	
Historically infilled pond	N/A	-	N/A	
Quarry high wall	-	-	N/A	

POTENTIAL ABNORM CONSTRAINT	LOCATION ON SITE	ESTIMATED AREA OF SITE AT RISK (%)	A OF SITE ASSESSMENT AND MITIGATION	
Mining	-	-	Shallow mine working have not been identified through the works completed to date. The site is within a coal mining reporting area however, confirmation has been received that suggests they have no concerns regarding the site.	
Slope	-	-	No significant slopes have been identified at the site.	

6. CONCLUSIONS AND RECOMMENDATIONS

CONTAMINATED LAND ASSESSMENT

CONTAMINATED LAND ASSESSIMENT				
	A Tier I human health risk assessment has been undertaken using the chemical analysis results of the soils and comparing to the relevant Tier I criteria. This assessment has identified the presence of elevated lead, within the topsoil at the site. These findings are consistent with those of the previously completed smith grant report.			
Human Health	Lead is identified at 0.10m bgl in TP123 and TP111. The concentrations have primary exposure pathways related to dermal contact and ingestion, soil ingestion and consumption of homegrown produce. These exceedances can be mitigated by the installation of a chemically suitable cover system within all proposed garden areas. Alternatively, these can be excavated and delineated through chemical validation during remedial works and placed in a future low sensitivity area within the proposed development, after which cover systems will no longer be required.			
	Asbestos, petroleum hydrocarbons and poly aromatic hydrocarbons have not been identified within any of the samples submitted for assessment.			
	Chemical analysis of the natural drift deposits have identified these soils to be acceptable for use as subsoil within the proposed garden areas; however, further chemical validation samples will be required to confirm this. In addition, topsoil at the site (with the exception of the two locations noted above) will be suitable for reuse.			
Controlled Weters	A Teir 1 controlled waters risk assessment has been completed for the site utilising leachate analysis of soils and groundwater samples obtained during and after the site works. Three locations within 2 discrete areas of the site confirm the presence of Zinc and one location (WS111) identifies the presenct of TPH C5-C6.			
Controlled Waters	All three groundwater samples obtained identify Methylphenol which is considered to be a potential vapour risk. However, and in the context of controlled waters, the risk is considered low in the absence of a viable receptor, significant source and the presence of low permeability cohesive stratum.			
Ground Gas	Current assessment based on initial monitoring visit confirms one area of the site (WS108) identifies levels of CO2 that would require CS2/Amber 1 classification. Given the absence of a significant source in this area it is likely that this is the degretation/decomposition of carbonate minerals within the natural stratum.			
	The full phase of ground gas monitoring should be completed to inform the full and detailed assessment and therefore level of risk. Currently an allowance for Cs2/amber 1 mitigation measures should be retained.			

Detable Weter	This will need to be confirmed following the completion of a UKWIR risk assessment. Post-remediation and enabling works ground conditions may		
Potable Water	be different from those identified during this site investigation. As assessment utilising chemical analysis of soils during the investigation		
	suggests polyethylene (PE) pipeline will be suitable.		

GEOTECHNICAL ASSESSMENT

Significant concrete and brick obstructions are not expected and have not been identified to date. During a phase of cut-and-fill enabling works, required to create a developable platform, all belowground obstructions will require grubbing out to the base of the Made Ground to enable the construction of proposed plots.

The underlying natural clay drift deposits have been assessed as being very stiff, high-strength with a net ABP in excess of 120 kN/m2 at circa 1 m bgl increasing to 150–200 kN/m2 at circa 2 m bgl. Similarly, granular gravel deposits have been identified as Dense with an ABP in excess of 400kN/m3 at 2.00m bgl.

Drift deposits to the south east of the site (in the area of formerly identified peat deposits) comprised soft silty clay and were assessed as having a net ABP of 89 kN/m2 increasing in the clay strata beneath to in excess of 100kN/m3 from circa 1.20m bgl

Due to the existing variances in the site topography, it is likely that a phase of cut-and-fill enabling works will be required in order to create a proposed development platform suitable for a residential development. The property to the north and well street to the south tie in to the levels at the site currently and so it is likely that some steps/gradient will be incorporated throughout.

As a result it is likely that for the majority of the site a strip or mass trench foundation solution will be viable. Where poor ground in the location of WS111 and/or where levels have been raised significantly a vibro stone column solution or driven pile may be required.

On completion of the finished design levels, topographical survey and arboricultural surveys a detailed foundation zoning planand cut/fill model should be completed to confirm the foundation requirements and model the presence of tree influence on foundations to determine the level of works required.

END OF REPORT

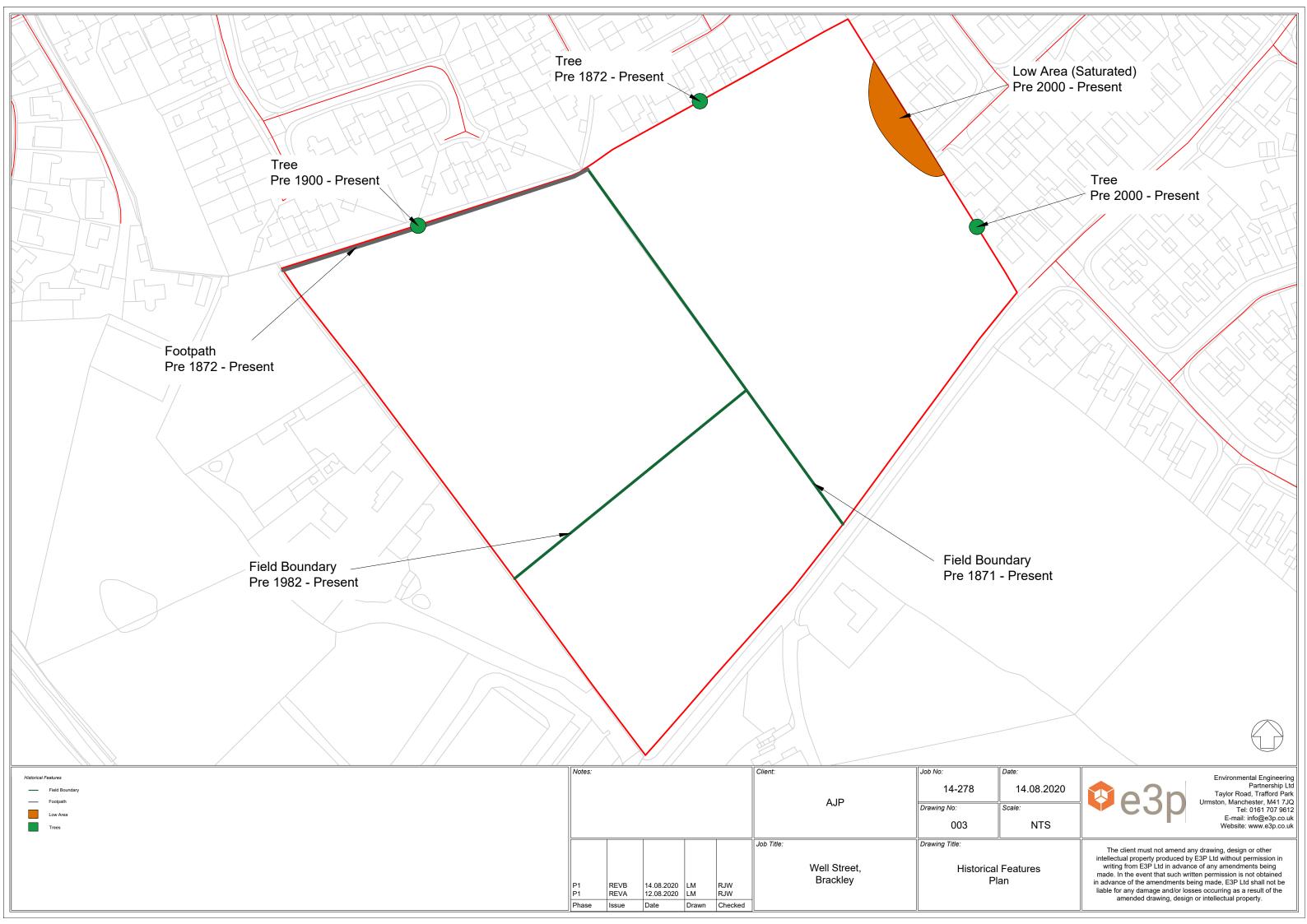
APPENDIX I LIMITATIONS

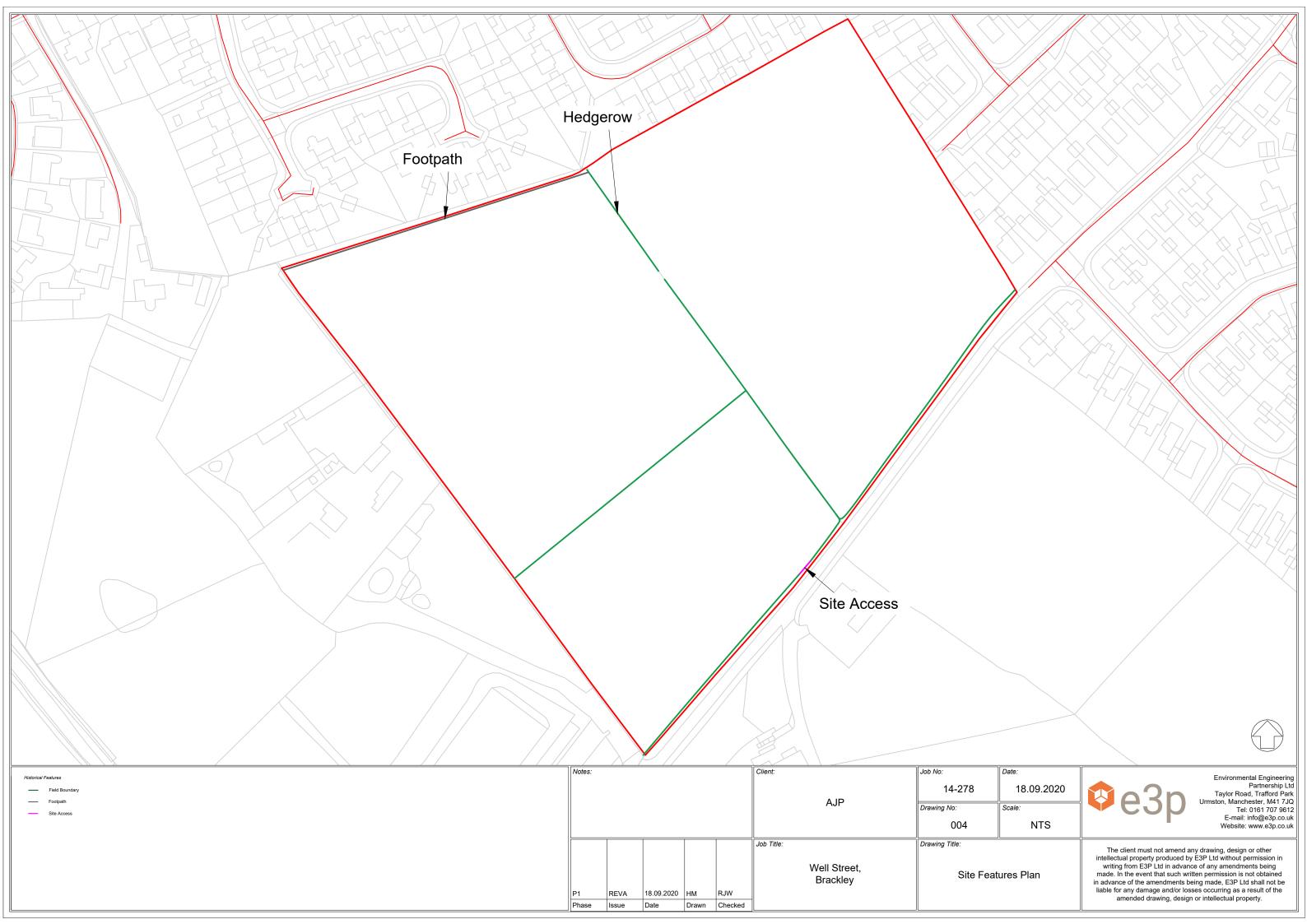
- 1. This report and its findings should be considered in relation to the terms of reference and objectives agreed between E3P and the client as indicated in Section 1.3.
- 2. For the work, reliance has been placed on publicly available data obtained from the sources identified. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. When using the information it has been assumed it is correct. No attempt has been made to verify the information.
- 3. This report has been produced in accordance with current UK policy and legislative requirements for land and groundwater contamination which are enforced by the local authority and the Environment Agency. Liabilities associated with land contamination are complex and requires advice from legal professionals.
- 4. During the site walkover, reasonable effort has been made to obtain an overview of the site conditions. However, during the site walkover, no attempt has been made to enter areas of the site that are unsafe or present a risk to health and safety, are locked, barricaded, overgrown, or the location of the area has not been made known or accessible.
- Access considerations, the presence of services and the activities being carried out on the site limited the locations where sampling locations could be installed and the techniques that could be used.
- 6. Site sensitivity assessments have been made based on available information at the time of writing and are ultimately for the decision of the regulatory authorities.
- 7. Where mention has been made to the identification of Japanese Knotweed and other invasive plant species and asbestos or asbestos-containing materials, this is for indicative purposes only and do not constitute or replace full and proper surveys.
- 8. The executive summary, conclusions and recommendations sections of the report provide an overview and guidance only and should not be specifically relied upon without considering the context of the report in full.
- 9. E3P cannot be held responsible for any use of the report or its contents for any purpose other than that for which it was prepared. The copyright in this report and other plans and documents prepared by E3P is owned by them and no such plans or documents may be reproduced, published or adapted without written consent. Complete copies of this may, however, be made and distributed by the client as is expected in dealing with matters related to its commission. Should the client pass copies of the report to other parties for information, the whole report should be copied, but no professional liability or warranties shall be extended to other parties by E3P in this connection without their explicit written agreement there to by E3P.
- 10. New information, revised practices or changes in legislation may necessitate the reinterpretation of the report, in whole or in part.

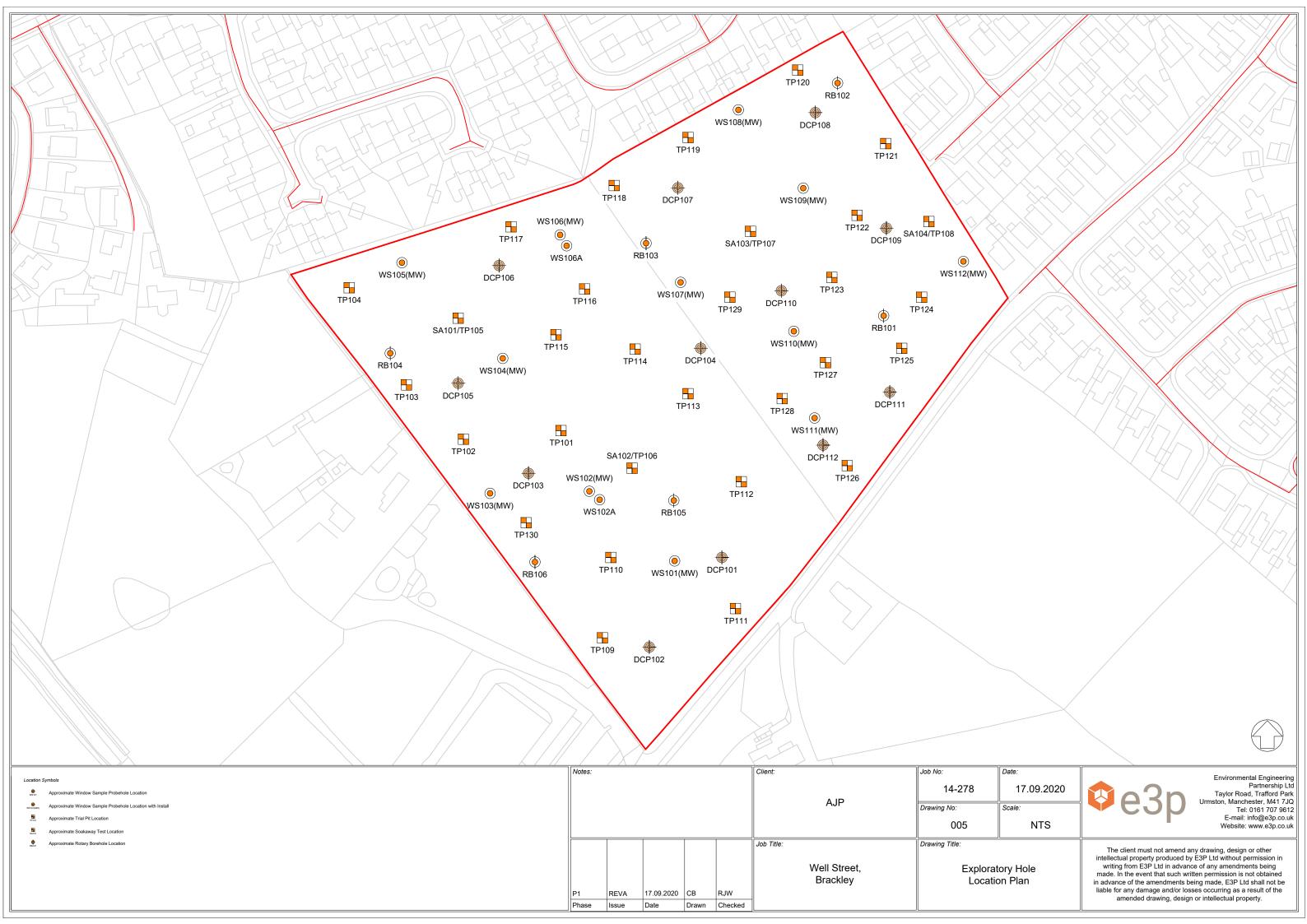
APPENDIX II GLOSSARY

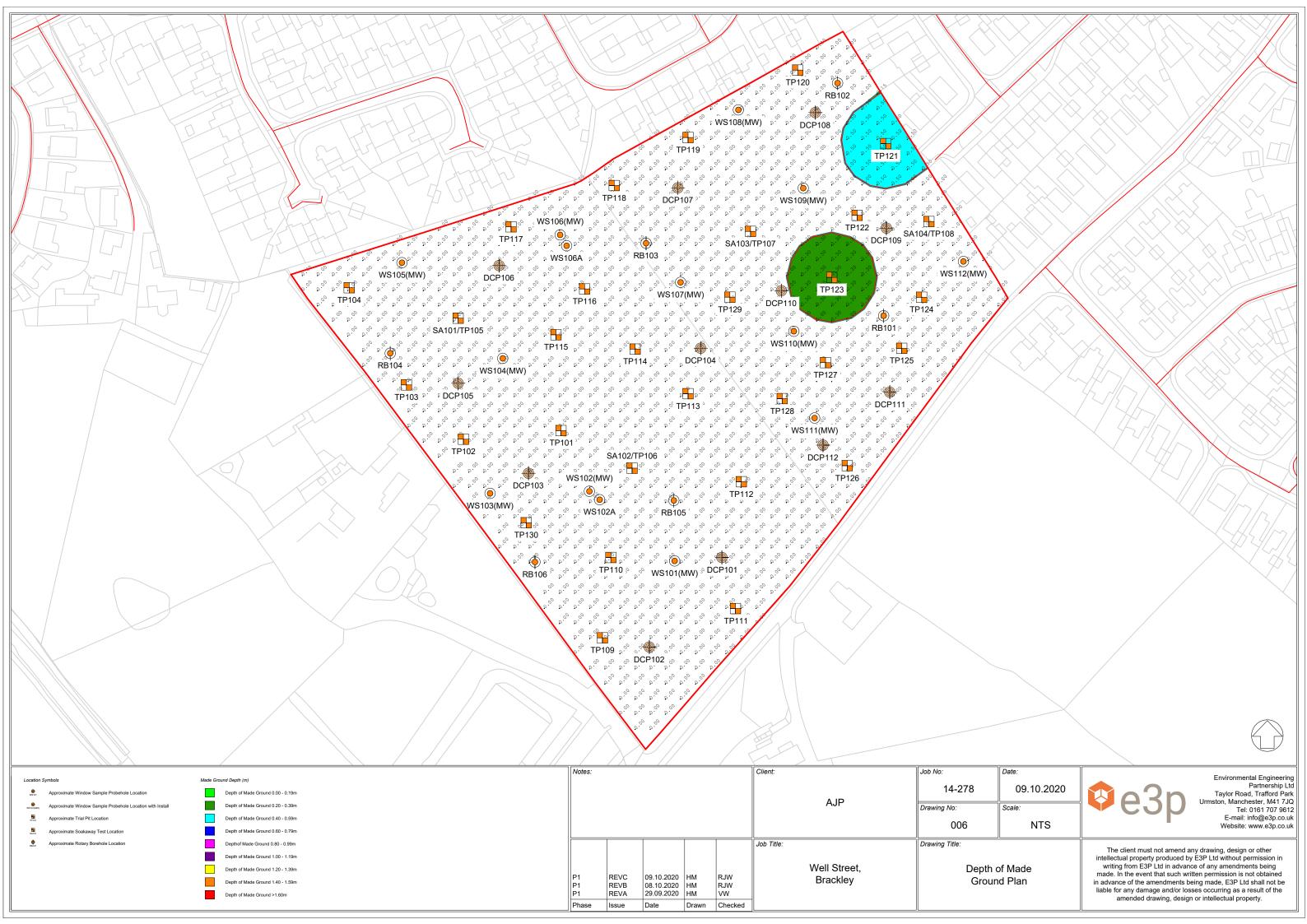
TERMS

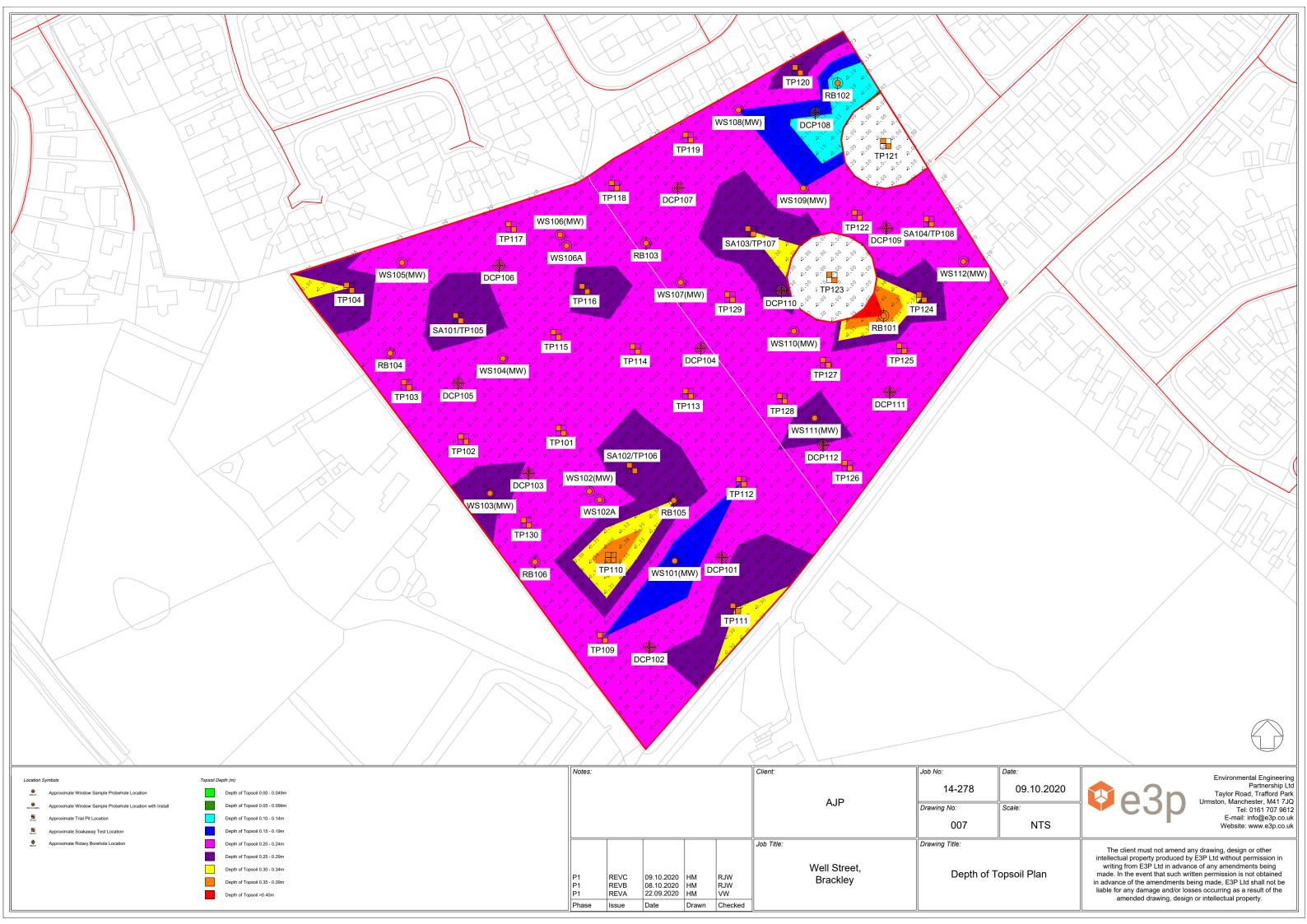
ACM	Asbestos-containing material	ММР	Materials management plan
ADS	Acoustic design statement	ND	Not detected
AST	Above-ground storage tank	NDP	Nuclear density probe
BGS	British Geological Survey	NMP	Noise management plan
BSI	British Standards Institute	NPSE	Noise policy statement for England
ВТЕХ	Benzene, toluene, ethylbenzene, xylenes	NR	Not recorded
CA	Coal Authority	PAH	Polycyclic aromatic hydrocarbon
CBR	California bearing ratio	РСВ	Polychlorinated biphenyl
CIEH	Chartered Institute of Environmental Health	PI	Plasticity index
CIRIA	Construction Industry Research Association	PID	Photo ionisation detector
CLEA	Contaminated land exposure assessment	POS	Public open space
CML	Council of Mortgage Lenders	PPE	Personnel protective equipment
CoC	Contaminants of concern	ProPG	Professional practice guidance
CSM	Conceptual site model	QA	Quality assurance
DNAPL	Dense non-aqueous phase liquid (chlorinated solvents, PCB)	SGV	Soil guideline value
DWS	Drinking water standard	SPH	Separate-phase hydrocarbon
EA	Environment Agency	SPT	Standard penetration test
EQS	Environmental quality standard	SVOC	Semi-volatile organic compound
FFL	Finished floor level	ТРН	Total and speciated petroleum hydrocarbon
GAC	General assessment criteria	TPH CWG	Total Petroleum Hydrocarbon (Criteria Working Group)
GL	Ground level	UKWIR	United Kingdom Water Infrastructure Risk
GSV	Gas screening value	UST	Underground storage tank
HCV	Health criteria value	vcc	Vibro-concrete column
ICSM	Initial conceptual site model	voc	Volatile organic compound
LEL	Lower explosive limit	VRSC	Vibro-replacement stone columns
LMRL	Lower method reporting limit	vsc	Vibro-stone columns
LNAPL	Light non-aqueous phase liquid (petrol, diesel, kerosene)	WHO	World Health Organisation

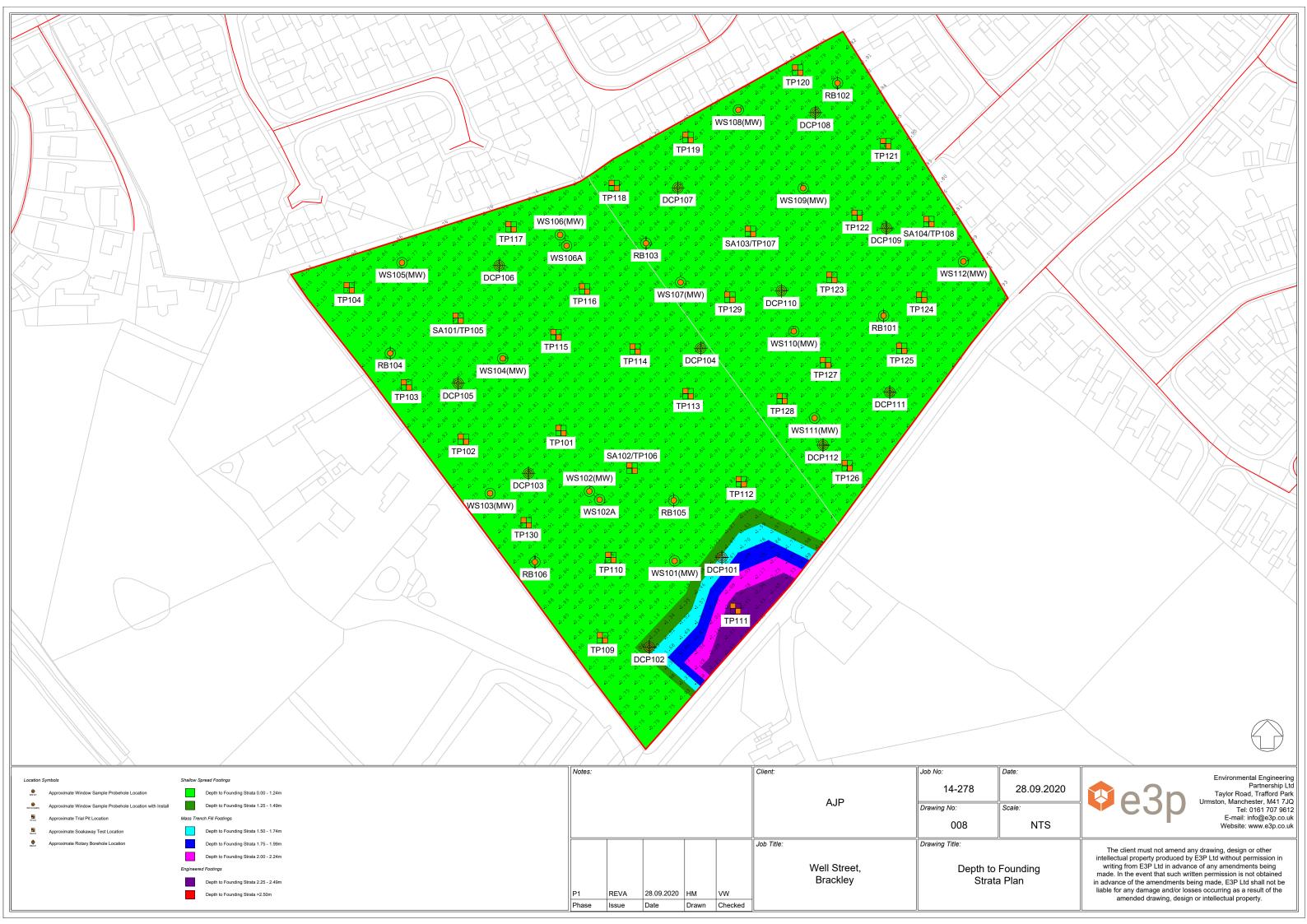


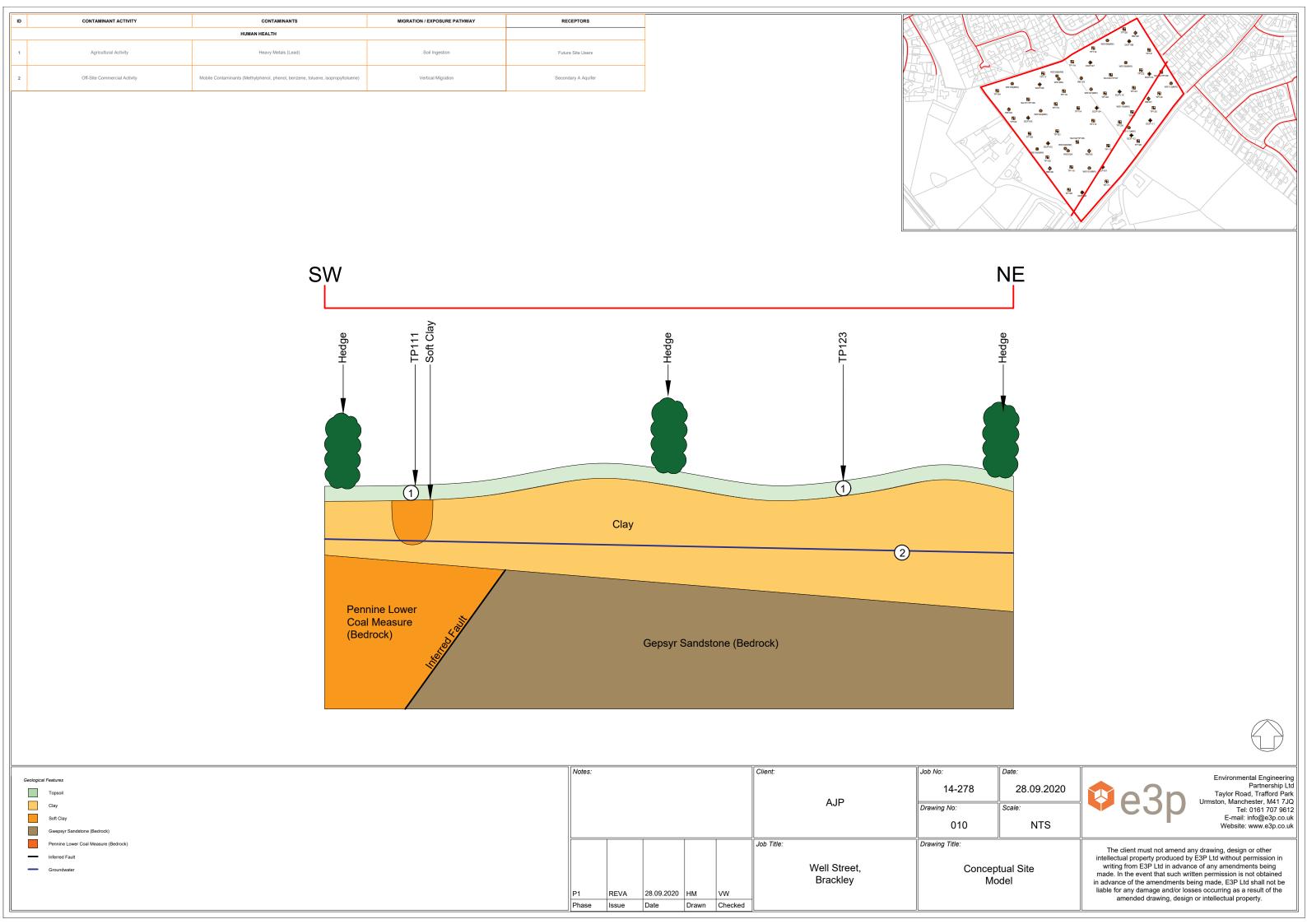

MCV	Moisture condition value	WRAP	Waste and Resources Action Programme
MIBK	Methyl isobutyl ketone	WTE	Water table elevation
m	Metres	ppm	Parts per million
km	Kilometres	mg/m³	Milligram per metre cubed
% v/v	Percent volume in air	m bgl bgl	Metres below ground level
mb	Millibars (atmospheric pressure)	m bcl	Metre below cover level
l/hr	Litres per hour	mAOD	Metres above ordnance datum (sea level)
μg/l	Micrograms per litre (parts per billion)	kN/m²	Kilonewtons per metre squared
ppb	Parts per billion	μm	Micrometre
mg/kg	Milligrams per kilogram (parts per million)	SSRT	Site Specific Remediation Target
PSD	Particle Size Distribution	DD	Dry Density
CL:AIRE	Contaminated Land: Applications in Real Environments	Мс	Moisture Content
ρ	Bulk Density	GPR	Ground Penetrating Radar
NDP	Nuclear Density Probe	FFL	Finished Floor Level
LEL	Lower Explosive Limit	UKWIR	UK Water Industry Research
CIRIA	Construction Industry Research and Information Association	LOD	Limit of Detection

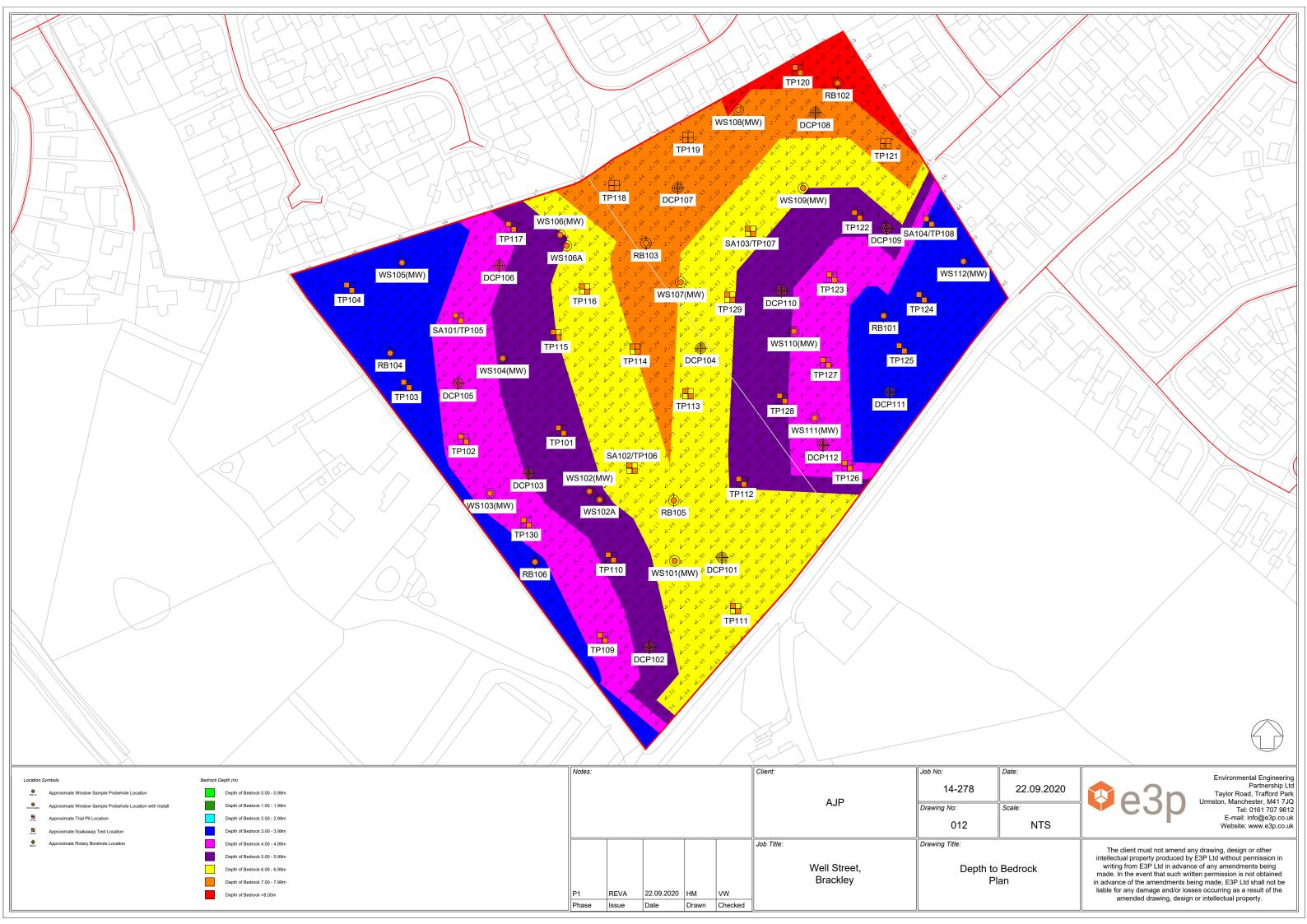

APPENDIX III DRAWINGS











APPENDIX IV PHOTOGRAPHS

PLATE 1 ENTRANCE TO SITE FRON WELL STREET

PLATE 2 VIEW OF SITE NORTH WEST

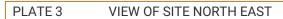


PLATE 4 GROUND CONDITIONS IDENTIFIED IN TP110

APPENDIX V E3P EXPLORATORY HOLE LOGS

TrialPit No TP101

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326702.00 - 363600.00

Level:

Date 01/09/2020

Location: Buckley

Dimensions (m):

2.10 Scale 1:30

(m): Depth 0.60

1:30 Logged

Client:	Alan Johns	ton Partr	nership				3.00		V. Wilkins	on		
ke fe	Samp	oles & In Si	tu Testing	Depth Level Lago								
Water	Depth	Туре	Results	(m)	(m)	Legend	Stratum De	scription				
	0.10	0.10 ES	0.10 ES	0.10 ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, sub-			
	1.00	ES					angular to sub-rounded of mu Cobbles are sub-angular to s	udstone and sands	tone.	1 -		
										-		
										2 -		
				3.00			End of Pit a	at 3.00m		3 -		
										4 -		

Trial Pit Photographs

Trial Pit 101 Trial Pit

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP102

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

Co-ords: 326657.00 - 363596.00 Level:

Date 01/09/2020

Location: Buckley

Dimensions (m):

2.10 90

Scale 1:30

Client:	Alan Johns	ton Part	nership				Depth 3.00	9.0			gged ilkinson
ter ke	Samp	oles & In S	itu Testing	Depth	Level	I					
Water	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description				
	2.00 2.00	ES ES HVP	78	0.20			frequent rootlets to sub-rounded Stiff high streng with occasional angular to sub-r	s. Gravel of mudst th brown cobbles. rounded o	elly sandy CLAY (To is fine to coarse, su one. Slightly gravelly san Gravel is fine to co of mudstone and sa to sub-rounded of	ndy CLAY arse, sub- ndstone.	1 -

Trial Pit Photographs

3.00

End of Pit at 3.00m

Trial Pit 102 Trial Pit 102 Spoil

Remarks: Complete.

TrialPit No TP103

Sheet 1 of 1

Project Name: Well Street Project No. 14278

Level

(m)

Legend

Depth

(m)

0.20

0.70

2.50

Co-ords: 326633.00 - 363622.00

9

Level:

Date 01/09/2020

Location: Buckley

Water Strike Dimensions (m):

2.10

Scale 1:30 Logged

V. Wilkinson

Client: Alan Johns	ton Partnership

Depth

0.10

0.60

Samples & In Situ Testing

Results

Type

ES

ES

Depth 2.50	

Stratum Description

Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.

End of Pit at 2.50m

Trial Pit Photographs

Trial Pit 103 Trial Pit 103 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

Stability: Stable

3

TrialPit No TP104

Sheet 1 of 1

Project Well Street Name:

Water Strike Project No. 14278

Level

(m)

Legend

Depth

(m)

0.30

0.70

3.10

Co-ords: 326607.00 - 363669.00

Level:

Date 01/09/2020

Location: Buckley

Depth

0.10

1.00

Dimensions (m): 2.10

Scale 1:30 Logged

V. Wilkinson

Samples & In Situ Testing

Results

Туре

ES

В

Depth	
3.10	

Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone.

Stratum Description

Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.

Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.

Trial Pit Photographs

End of Pit at 3.10m

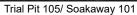
Trial Pit 104

Trial Pit 104 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

Stability: Stable

3


TrialPit No TP105/ SA101 Sheet 1 of 1

Co-ords: 326657.00 - 363654.00 Project No. Date Project Well Street Name: 14278 Level: 01/09/2020 2.10 Scale Dimensions Location: Buckley (m): 1:30 Depth Logged Alan Johnston Partnership

Client	Alan Johns	ion Pari	nersnip				2.00 V. Wilkinsor
Samples & In Situ Testing		Depth	Level	Legend	Stratum Description		
S to	Depth	Туре	Results	(m)	(m)		·
	0.10	ES		0.30			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.
	1.00	ES		0.70			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.
				2.00			End of Pit at 2.00m

Trial Pit Photographs

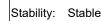
Trial Pit 105/ Soakaway 101 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP106/ SA102

					Sheet I of I
Project	Well Street	Project No.	Co-ords: 326734.00 - 3	63584.00	Date
Name:	Well Street	14278	Level:		01/09/2020
Location:	Buckley		Dimensions (m):	2.10	Scale 1:30
Client:	Alan Johnston Partnership		Depth 0		Logged

ke fe	Samples & In Situ Testing		Depth	Level		Charles Description		
San Depth	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.10	ES					Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone.	
				0.30			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	1 -
				2.00			End of Pit at 2.00m	3


Trial Pit Photographs

Trial Pit 106 Trial Pit 106 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP107/ SA103 Sheet 1 of 1

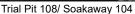
	_				
Project	Well Street	Project No.	Co-ords: 326789.00 - 3	Date	
Name: ^v		14278	Level:		01/09/2020
Location: Buckley			Dimensions	2.10	Scale
LUCALIUII	. Duckiey		(m): 09		1:30
Client:	Alan Johnston Partnership		Depth ö		Logged

Cilent.	Alan Johns	ion Parin	ersnip				2.00 V. Wilkinso	n
Water Strike	Samp	Depth Level Legend			Stratum Description			
Wa	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
				0.30			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone.	
	0.50 0.50	0.50 HVP 0.60 ES	109	0.00			Stiff high strength orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.	-
				0.70			Stiff high strength brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone.	-
	1.00	HVP	131				Cobbles are sub-angular to sub-rounded of mudstone.	1
				2.00			End of Pit at 2.00m	2

Trial Pit Photographs

Trial Pit 107/ Soakaway 103 Spoil

Remarks: Complete.


TrialPit No TP108/ SA104 Sheet 1 of 1

Project No. Co-ords: 326868.00 - 363696.00 Date Project Well Street Name: 01/09/2020 14278 Level: 2.10 Scale Dimensions Location: Buckley (m): 1:30 0.60 Depth Logged Alan Johnston Partnership Client: 2.00 V. Wilkinson

							2.00	,011			
호호 Sampl		les & In S	Situ Testing	Depth	Level	Legend					
Water	Depth	Туре	Results	(m)	(m) (m) Le		Stratum Description				
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly	- - - -			
				0.80			CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.				
							Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	1 -			
								-			
				2.00			End of Pit at 2.00m	2			
								3 —			
								- - - - - - - -			
								4 =			

⊥ ⊥ ⊥ ⊥ Trial Pit Photographs

Trial Pit 108/ Soakaway 104

Remarks: Complete.

TrialPit No TP109

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326720.00 - 363504.00

Level:

Date 01/09/2020

Location: Buckley

Dimensions (m):

Depth

2.10

Scale 1:30

3.00		

	Logged	
V.	Wilkinson	

ž e	Samples & In Situ Testing		Depth Level			Stratum Description		
Water Strike	Depth Type Results	(m)	(m)	Legend	Stratum Description			
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone. (Becoming very sandy at 2.00 m bgl)	1 —
	2.90	ES		3.00			End of Pit at 3.00m	3

Trial Pit Photographs

rial Pit 109

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP110

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

Co-ords: 326725.00 - 363542.00

Level:

Date 01/09/2020

Location: Buckley

Dimensions (m):

Depth

2.10 0.60

Scale 1:30 Logged V. Wilkinson

Alan Johnston Partnership Client:

3.10

ke fe	Samp	Samples & In Situ Testing		Depth Level			Stratum Description	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend		
	0.10	ES		0.40			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone.	
	0.80	ES		0.40			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	1 —
	2.50	HVP	157	3.10			End of Pit at 3.10m	2
								4 —

Trial Pit Photographs

Trial Pit 110

Remarks: Complete.

TrialPit No TP111

Sheet 1 of 1

Project Name: Well Street Project No. 14278

Level

(m)

Legend

Depth

(m)

0.30

0.70

2.30

3.10

Co-ords: 326780.00 - 363518.00

9

Level:

Date 01/09/2020

Location: Buckley

Water Strike Dimensions (m):

Depth

3.10

2.10

Scale 1:30

Logged

V. Wilkinson

Client: Alan Johnston Partnership

Depth

0.10

0.50

0.80

1.20

2.00

2.50

Samples & In Situ Testing

Results

38

42

45

120

Type

ES

ES

HVP

HVP

HVP

HVP

Dark brown slightly gravelly sar frequent rootlets. Gravel is fine to sub-rounded of mudstone.	

Stratum Description

Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.

Soft low strength slightly gravelly silty CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone of sandstone. Becoming firm medium strength at 1.20 m bgl.

Stiff high strength brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.

End of Pit at 3.10m

Trial Pit Photographs

Trial Pit 111 Trial Pit 111 Spoil

Remarks: Complete.

Stability: Stable

3

TrialPit No TP112

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

Co-ords: 326784.00 - 363577.00

Level:

Date 01/09/2020

Location: Buckley

Dimensions (m):

2.10 09.0

Scale 1:30

							J ^{(···/·}	00
Client:	Alan Johns	ton Partr	nership					lged kinson
Water Strike	Samp	les & In Sit	tu Testing	Depth	Level	Legend	Stratum Description	
Wa	Depth	Туре	Results	(m)	(m)	Legenu	·	
	1.00	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal. Stiff brown slightly gravelly sandy CLAY with occasional cobbles and boulders. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone and sandstone. Cobbles and boulders are sub-angular to sub-rounded of mudstone.	2 -
								3

Trial Pit Photographs

3.30

End of Pit at 3.30m

Trial Pit 112 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP113

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326760.00 - 363619.00

0.60

Level:

Date 01/09/2020 Scale

Location: Buckley

Dimensions (m):

1:30 Logged

Client: Alan Johnston Partnership

Depth 3.30

Logged V. Wilkinson

2.10

Water Strike	Samp	Samples & In Situ Testing		Depth Level			Charles December 1	
Wa	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly	
				1.00			CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.	1 —
							Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	. 1
	1.50	В						
								2 -
	2.50	ES						
				3.30			End of Pit at 3.30m	3 -
								⊿ ∃

Trial Pit Photographs

Trial Pit 113

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP114

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326736.00 - 363638.00

Date 01/09/2020

Location: Buckley

Dimensions (m):

Depth

Level:

2.10

Scale 1:30 Logged

V. Wilkinson

Client: Alan Johnston Partnership

3.00

ter ke	Sampl Depth	les & In S	Situ Testing	Depth	Level	Legend	Stratum Description	
Wa	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.	
				0.90			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	1 -
	2.00	ES						2 -
				3.00			End of Pit at 3.00m	3

Trial Pit Photographs

Il Pit 114 Trial Pit 114 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

©e3p

TrialPit No TP115

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326700.00 - 363645.00

Level:

Date 01/09/2020

Location: Buckley

Dimensions (m):

2.10

Scale 1:30

Client: Alan Johnston Partnership

Depth 3.00 Logged V. Wilkinson

ke fe	Samples & In Situ Testing		Depth Level			Charles Donneistics	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description
	0.40	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.
				1.00			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.
				3.00			2 -
				3.00			End of Pit at 3.00m

Trial Pit Photographs

Trial Pit 115

Trial Pit 115 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP116

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326713.00 - 363666.00

Level:

Date 01/09/2020

Location: Buckley

Dimensions (m)

09

Scale 1:30

							(m): 0 1:30	
Client:	Alan Johns	ton Part	nership				(m): 28	
ke te	Samp	oles & In S	itu Testing	Depth	Level	1	0	
Water Strike	Depth	Туре	Results	(m) (m) L		Legend	·	
	4.00	50		0.30			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.	
	1.00	ES		1.10			Stiff high strength brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	2 —
3.20	2.50	HVP	114	3.20 3.30			Grey GRAVEL. Gravel is fine to coarse, angular to subangular of mudstone. (weathered bedrock) End of Pit at 3.30m	3 -

Trial Pit Photographs

Trial Pit 116 T

Remarks: 1. Complete. 2. Steady water seepage encountered at 3.20 m bgl.

©e3р

TrialPit No TP117

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326679.00 - 363695.00

Level:

Date 01/09/2020

Location: Buckley

Dimensions (m):

2.10

Scale 1:30

Client: Alan Johnston Partnership

De	P	un	
2.	1	0	

Logged V. Wilkinson

			<u> </u>				2.10 V. VVIIKIN	ison
Water Strike	Samples & In Situ Testing			Depth Level (m)		Legend	Stratum Description	
Wa	Depth Type Results (m	Legend	Stratum Description					
•	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal. Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	1
2.00				2.10			Grey GRAVEL. Gravel is fine to coarse, angular to sub- angular of mudstone. (weathered bedrock) End of Pit at 2.10m	3 -

Trial Pit Photographs

Remarks: 1. Complete. 2. Steady water seepage encountered at 2.00 m bgl.

Trial Pit 117 Spoil

Stability: Stable

©е3р

TrialPit No **TP118**

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

Co-ords: 326734.00 - 363712.00

Level:

Date 02/09/2020 Scale

Location: Buckley

Dimensions (m):

2.10 0.60

1:30 Logged

							[(11).
Client:	Alan Johns	ston Partn	ership				Depth 0 Logged V. Wilkinso
ke te	Samples & In Situ Testing		Depth	Level	l		
Water	Depth	Туре	Results	(m)		Legend	Stratum Description
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.
				0.90			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.
	1.50	ES					
				3.00			End of Pit at 3.00m

Trial Pit Photographs

Trial Pit 118 Trial Pit 118 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP119

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326764.00 - 363732.00

Level:

Date 02/09/2020

Location: Buckley

Dimensions (m):

Depth

2.10

Scale 1:30

Client: Alan Johnston Partnership

3.00

Logged V. Wilkinson

	Caman	Samples & In Situ Testing						
Water	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal. Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	2
				3.00			End of Pit at 3.00m	3 -

Trial Pit Photographs

Stability: Stable

I Pit 119 Trial Pit 119 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

©e3p

TrialPit No TP120

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326814.00 - 363761.00

Level:

Date 02/09/2020

Location: Buckley

Dimensions (m):

2.10

Scale 1:30

Client: Alan Johnston Partnership

Depth 3.30 Logged V. Wilkinson

							V. WIIKITI	3011
ter	Samp	Samples & In Situ Testing		Depth	Depth Level		Charles Danasiation	
Water Strike	Depth	Туре	Results		(m)	Legend	Stratum Description	
	0.10	ES		0.00			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone.	=
	0.60	HVP	156	0.30			Very stiff very high strength orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.	
	0.00	1101	100	0.90				=
	1.00 1.00	B ES					Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	1 -
								2 -
								- - - - - -
				2.90			Reddish brown clayey fine to medium SAND.	-
							readish brown duyey line to medium OAND.	3 -
				3.30		7 / 5 ° V ° 6 ° 5	End of Pit at 3.30m	
								<u> </u>

Trial Pit Photographs

Trial Pit 120

Trial Pit 120 Spoil

Remarks: Complete.

Stability: Stable

9e3p

TrialPit No **TP121**

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

Co-ords: 326843.00 - 363734.00

Level:

Date 02/09/2020

Location: Buckley

Dimensions (m):

Depth

2.10 0.60

Scale 1:30 Logged

V. Wilkinson

Client: Alan Johnston Partnership

2.60

							Z.00 V. WIIKIIISOII
Water Strike	Samp	les & In S	Situ Testing	Depth	Level	Legend	Stratum Description
Wa	Depth	Туре	Results	(m)	n) (m)	Legend	Stratum Description
	0.10	ES		0.20			MADE GROUND: Dark brown slightly gravelly sandy clay (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone.
	0.30	ES		0.50			MADE GROUND: Brown slightly gravelly sandy clay. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone and sandstone and coppers pipe. (Land
				0.00			drain encountered at 0.30 m bgl). Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, sub-
							angular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.
							2 -
				2.50 2.60			Grey GRAVEL. Gravel is fine to coarse, angular to sub- angular of mudstone. (weathered bedrock)
							End of Pit at 2.60m
							3 -

Trial Pit Photographs

Trial Pit 121

Trial Pit 121 Spoil

Remarks: Complete.

TrialPit No TP122

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326837.00 - 363699.00 Level: Date

Location: Buckley

Dimensions (m):

2.10

02/09/2020 Scale 1:30

Client: Alan Johnston Partnership

Depth 3.00 Logged V. Wilkinson

Olicit.	/ liair gorins	ton r an	inoromp				3.00 V. Wilkins	son
Water Strike	Samp	les & In S	Situ Testing	Depth	Level	Legend	Stratum Description	
Wa	Depth	Туре	Results	(m)	(m)	Legend	·	
	0.10	ES					Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular	
				0.20			to sub-rounded of mudstone.	-
							Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded	-
				0.50			of mudstone, sandstone and coal.	_
							Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, sub-	-
							angular to sub-rounded of mudstone and sandstone.	
							Cobbles are sub-angular to sub-rounded of mudstone.	-
								1 -
								' =
								=
								=
								=
								-
								-
								=
								-
								2 -
								-
								-
								-
								=
								-
								=
				3.00			End of Pit at 3.00m	3 -
							End of Fit at 3.00m	=
								=
								-
								_
								=
								=
								=
								4 -

Trial Pit Photographs

Trial Pit 122

Remarks: Complete.

TrialPit No TP123

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326821.00 - 363672.00

0.60

Level:

(m):

Dimensions

Date 02/09/2020 Scale

Location: Buckley

Client: Alan Johnston Partnership

Depth 2.50 1:30 Logged V. Wilkinson

2.10

			•				2.50 V. WIIKINS	son
Water Strike	Samp	les & In S	Situ Testing	Depth	Level	Lagand		
Wa	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.10	ES		0.30			MADE GROUND: Dark brown slightly gravelly sandy clay (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone and rare ceramic. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.	-
				1.00			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	1 -
	2.00	ES		0.50			g	2
				2.50			End of Pit at 2.50m	3
								4 -

Trial Pit Photographs

Trial Pit 123

Remarks: Complete.

Stability: Stable

© ⊝3r

TrialPit No **TP124**

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

Co-ords: 326863.00 - 363665.00

Level:

Date 02/09/2020 Scale

Location: Buckley

Dimensions (m):

2.10 0.60

1:30 Logged

							(1.50	
Client:	Alan Johns	ton Partr	nership				Depth 0 Logge V. Wilkin	
ke ke	Samp	oles & In Sit	u Testing	Depth	Level	l		
Water	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.10	ES		0.30			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone.	-
				0.30			Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.	
				1.10			- d - d	1 -
							Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	-
								-
	2.00	ES						2 -
								-
								-
								-
	3.20	ES		3.00			Reddish brown clayey fine to medium SAND.	3 -
	3.20							-
				3.70			End of Pit at 3.70m]
							End of Pit at 3.70m	-
								1 .

Trial Pit Photographs

Trial Pit 124 Trial Pit 124 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP125

Sheet 1 of 1

Project Name: Well Street Project No. 14278 Co-ords: 326857.00 - 363638.00

0.60

Level:

Date 02/09/2020

Location: Buckley

Dimensions (m):

2.10

Scale 1:30

Client: Alan Johnston Partnership

Depth 2.90 Logged V. Wilkinson

ke fe	Samp	les & In S	Situ Testing	Depth	Level	ļ	0	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.	-
	1.00	ES		0.90			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	1 —
				2.90				2 —
				2.50			End of Pit at 2.90m	3

Trial Pit Photographs

Trial Pit 125

Trial Pit 125 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No TP126

Sheet 1 of 1

Project Name: Well Street Project No. 14278

Depth

0.90

3.60

Co-ords: 326832.00 - 363584.00

Level: Dimensions Date 02/09/2020

Location: Buckley

(m):

Depth

3.60

2.10

Scale 1:30 Logged

V. Wilkinson

Samples & In Situ Testing

≤ w	Depth	Type	Results	(111)	(111)		
	0.10	ES					Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular
				0.20		*******	to sub-rounded of mudstone.
							Stiff orange brown mottled grey slightly sandy gravelly

Legend

Level

Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.

Stratum Description

Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone Becoming very gravelly at 3.10 m bdl.

Cobbles are sub-angular to sub-rounded of mudstone.
Becoming very gravelly at 3.10 m bgl.

Trial Pit Photographs

End of Pit at 3.60m

Trial Pit 126 Trial Pit 126 Spoil

Remarks: Complete.

3.30

ES

Stability: Stable

3

TrialPit No **TP127**

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

Co-ords: 326826.00 - 363637.00

Level:

Date 02/09/2020

Location: Buckley

Dimensions (m):

2.10 0.60

Scale 1:30

Client: Alan Johnston Partnership Depth 3.00

Logged V. Wilkinson

ke te	Samp	les & In S	Situ Testing	Depth	Level	ļ	0. 1. 5	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.	-
	1.50	ES		1.00			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.	1 -
				3.00				2
				3.00			End of Pit at 3.00m	3

Trial Pit Photographs

Trial Pit 127 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No **TP128**

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

Co-ords: 326802.00 - 363615.00

Level:

3.00

Date 02/09/2020

Location: Buckley

Dimensions (m):

0.60 Depth

2.10

Scale 1:30 Logged

V. Wilkinson

Client: Alan Johnston Partnership

Stratum Description

- o	Samp	les & In S	Situ Testing	Donth	Level		,
Water Strike	Depth	Туре	Results	Depth (m)	(m)	Legend	Stratum Description
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.
	0.80	В		1.00			Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.
	2.00	ES					2 -
				3.00			End of Pit at 3.00m

Trial Pit Photographs

Trial Pit 128 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

TrialPit No **TP129**

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

0.90

2.80

Co-ords: 326780.00 - 363663.00

Level:

Date 02/09/2020

Location: Buckley

Dimensions (m):

Depth

2.80

2.10 9

Scale 1:30 Logged

V. Wilkinson

Samples & In Situ Testing

e e	Samp	les & In S	Situ Testing	Depth	Level		01.1
Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description
	0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone.
	0.40 0.50	HVP ES	114				Stiff high strength orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal.

Stiff brown slightly gravelly sandy CLAY with occasional cobbles. Gravel is fine to coarse, subangular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.

End of Pit at 2.80m

Trial Pit Photographs

Trial Pit 129 Trial Pit 129 Spoil

Remarks: Complete.

Stability: Stable

3

TrialPit No **TP130**

Sheet 1 of 1

Project Well Street Name:

Project No. 14278

Level

Depth

3.00

Co-ords: 326686.00 - 363559.00 Level:

Date 02/09/2020

Location: Buckley

Water Strike

Dimensions (m):

3.00

9 Depth

Scale 1:30 Logged

V. Wilkinson

Client: Alan Johnston Partnership

Samples & In Situ Testing

Stratum Description

2.10

Depth	Туре	Results	(m)	(m)	Legena	Stratum Description
0.10	ES		0.20			Dark brown slightly gravelly sandy CLAY (Topsoil) with frequent rootlets. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone.
0.40	ES		0.50			Stiff orange brown mottled grey slightly sandy gravelly CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone, sandstone and coal. Stiff brown slightly gravelly sandy CLAY with

Legend

occasional cobbles. Gravel is fine to coarse, sub-angular to sub-rounded of mudstone and sandstone. Cobbles are sub-angular to sub-rounded of mudstone.

End of Pit at 3.00m

Trial Pit Photographs

Trial Pit 130 Spoil

Remarks: Complete. Unable to complete hand shear vane due to friable nature of clay.

Stability: Stable

3

	<u> </u>							Borehole N	0.
	231				Вс	reh	ole Log	WS101	l
				Dunin ()				Sheet 1 of	
t Name:	Well Str	eet				Co-ords:	326753E - 363540N	Hole Type WS	;
on:	Bucklev					Level:		Scale	
									/
	Alan Jol	nnston	Partnership		1	Dates:	01/09/2020	V. Wilkinso	
Water Strikes				Depth (m)	Level (m)	Legend	Stratum Description		
Water Strikes	Sample Depth (m) 0.50 1.00 1.00 2.00 2.00 3.00 3.00 3.20 4.00	Type U D SPT D SPT ES SPT	Results N=18 (3,4/5,4,5,4) N=18 (3,4/4,4,5,5)	(m) 0.15 0.30	Level (m)	Legend	Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coar to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very Stiff high strength brown slightly of CLAY. Gravel is fine to coarse, sub-and rounded of mudstone and sandstone. I stiff very high strength at 4.00 m bgl.	AY (Topsoil) with se, sub-angular and gravelly sandy gravelly gravelly sandy gular to sub-Becoming very	3 3 3 4 7 8 9 9
	on: Water Strikes	St Name: Well Str.	Water Sample and In	Sample and In Situ Testing Depth (m) Type Results	Name: Well Street Project No.	Name: Well Street Project No.	Project No. 14278 Co-ords:	Project No. 14278	Borehole Log ## Name: Well Street

1. Complete. 2. Refused on stiff CLAY at 4.38 m bgl. 3. Water strike encountered at 3.00 m bgl. 4. Monitoring well installed, response zone 1.00 m to 4.00 m bgl.

									Borehole N	О.
		23r				Вс	oreh	ole Log	WS102	2
									Sheet 1 of	
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:	326719E - 363569N	Hole Type WS	•
Locati	on.	Buckley	,				Level:		Scale	
							20101.		1:50 Logged By	,
Client:				Partnership		1	Dates:	01/09/2020	V. Wilkinso	
Well	Water Strikes	Sample Depth (m)	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.10	ES	resuits	0.20			Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coar	AY (Topsoil) with	
		1.00	D		1.00			to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal.	v sandy gravelly to sub-rounded	
		1.00	SPT	N=17 (3,4/4,4,4,5)				Very stiff high strength brown slightly g CLAY. Gravel is fine to coarse, sub-ang rounded of mudstone and sandstone. I stiff very high strength at 2.90 m bgl.	gular to sub-	1 —
		2.00 2.00	D SPT	N=28 (6,4/8,7,7,6))					2 —
		2.90	SPT	50 (7,13/50 for 255mm)	3.28			End of Borehole at 3.28r	0	3 —
										6 7 8 9 9
										10

1. Complete. 2. Refused on cobble at 3.28 m bgl. 3. Monitoring well installed, response zone 1.00 m to 3.00 m bgl.

		~ O r					·		Borehole N	
		23 1				Вс	reh	ole Log	WS102	
					Project No.				Sheet 1 of Hole Type	
Projec	t Name:	Well Str	eet		14278		Co-ords:	326722E - 363566N	WS	
Location	on:	Buckley					Level:		Scale 1:50	
Client:		Alan Joh	nnston	Partnership			Dates:	01/09/2020	Logged By	
				n Situ Testing	Danth	11			V. Wilkinso	n
Well	Water Strikes	Depth (m)	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
		,	,,		0.20			Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars	Y (Topsoil) with se, sub-angular	
								to sub-rounded of mudstone. Stiff orange brown mottled grey slightly	sandy gravelly	
					0.60			CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal.	/	=
		1.00 1.00	D SPT	N=20 (5,4/4,6,5,5)				Very stiff high strength brown slightly g CLAY. Gravel is fine to coarse, sub-and	jular to sub-	1 🚽
		1.00		11 20 (0, 1/1,0,0,0)				rounded of mudstone and sandstone. E medium red brown fine to medium SAN 3.00 m and 3.20 m bgl.		
								3.00 III and 3.20 III bgi.		
		2.00	D							2 =
		2.00	SPT	N=28 (6,8/7,9,6,6)						
										=
		3.00 3.00	D SPT	N=29 (6,9/7,10,7,5)					3 —
										=
										=
	4.00	4.00 4.00	D SPT	N=27 (6,8/5,7,8,7)						4 📑
		4.00	01 1	14-27 (0,0/0,7,0,7)						
		5.00	D							5 —
		5.00	SPT	N=21 (8,7/5,5,5,6)						
					5.45			End of Borehole at 5.45n	1	1
										6 —
										=
										7 🗖
										8 =
										=
										9 —
										10 —

1. Complete 2. Water strike encountered at 4.00 m bgl.

									Borehole N	0.
		23 1				Вс	oreh	ole Log	WS103	3
									Sheet 1 of	
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:	326670E - 363572N	Hole Type WS	•
Locati		Dualday			11210		Level		Scale	
Location	on:	Buckley					Level:		1:50	
Client:		Alan Joh	nnston	Partnership			Dates:	01/09/2020	Logged By V. Wilkinso	
Well	Water Strikes	Sample Depth (m)	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.10	ES	Nesuits				Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coar	AY (Topsoil) with	
					0.30		<u> </u>	to sub-rounded of mudstone. Stiff orange brown mottled grey slightly	/	=
								CLAY. Gravel is fine to coarse, angular	to sub-rounded	
		1.00			1.00			of mudstone, sandstone and coal.		
		1.00 1.00	D SPT	N=20 (3,4/5,4,5,6)	1.00			Very stiff high strength brown slightly g CLAY. Gravel is fine to coarse, sub-ang	ravelly sandy gular to sub-	1 -
								rounded of mudstone and sandstone. I stiff very high strength at 4.00 m bgl.	Becoming very	
								Sun very high strength at 4.00 m bgi.		
		2.00	D							2 —
		2.00	SPT	N=17 (3,4/4,4,4,5)						
]
		3.00	D							
		3.00	SPT	N=21 (7,6/5,5,5,6)						3 —
		4.00	SPT	50 (17,8/50 for						
		4.00	351	170mm)						4 —
(///22///					4.30			End of Borehole at 4.30n	n	
										=
										5 —
										ਁ ‡
										3
										6 —
										ਁ ‡
]
										7 -
										8 —
										ਁ =
										=
										9 —
										<u> </u>
										10 —
l			1							1 1

1. Complete. 2. Refused on weathered MUDSTONE bedrock at 4.30 m bgl. 3. Monitoring well installed, response zone 1.00 m to 4.00 m bgl.

		e3r)			Вс	reh	ole Log	Borehole N WS104	4
Projec	t Name:	Well Str	eet		Project No.		Co-ords:	326676E - 363635N	Sheet 1 of Hole Type	
Locati		Buckley			14278		Level:		WS Scale 1:50	
Client:		Alan Jol	nnston	Partnership			Dates:	01/09/2020	Logged By V. Wilkinso	
Well	Water			n Situ Testing	Depth	Level	Legend	Stratum Description	v. vviiitiiio	
Well	Water Strikes	Depth (m) 0.40 1.00 3.00	Type ES SPT SPT	Results N=18 (4,5/4,5,5,4 N=27 (5,7/6,6,8,7 50 (10,13/50 for 190mm)	(m) 0.20 0.50	Level	Legend	Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly grounded of mudstone and sandstone. Estiff very high strength at 3.00 m bgl.	rese, sub-angular sandy gravelly to sub-rounded ravelly sandy jular to sub- secoming very	3 4 1
										10 —

1. Complete. 2. Refused on weathered MUDSTONE bedrock at 3.30 m bgl. 3. Monitoring well installed, response zone 1.00 m to 3.00 m bgl.

		- 0 -							Borehole N	О.
4		3 31				Вс	oreh	ole Log	WS10	5
							_		Sheet 1 of	
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:	326631E - 363678N	Hole Type WS	;
Locati	on:	Buckley		<u>_</u>			Level:		Scale	
									1:50 Logged By	, -
Client:				Partnership		1	Dates:	01/09/2020	V. Wilkinso	
Well	Water Strikes	Sample Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Dopar (III)	1,700	rtoduto	0.20			Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coar	AY (Topsoil) with se, sub-angular	
								to sub-rounded of mudstone. Stiff orange brown mottled grey slightly	/ sandy gravelly]
					0.80			CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal.	to sub-rounded	
		1.00 1.00	D SPT	N=14 (7,8/5,3,3,3)				Stiff medium strength brown slightly gr CLAY. Gravel is fine to coarse, sub-ang	gular to sub-	1 🚽
		1.00	JF1	14 (7,0/3,3,3,3)				rounded of mudstone and sandstone. brown fine to medium SAND encounte	red between	
								2.50 m and 2.80 m bgl. Becoming very strength at 2.00 m bgl.	stiπ nign	
		2.00	D							2 —
		2.00	SPT	N=20 (3,4/6,5,4,5)						
]
]
		3.00	SPT	N=21 (4,6/5,5,5,6)						3 🚽
]
::H:		3.60	SPT	50 (14,11/50 for 180mm)	3.60			Dense grey GRAVEL. Gravel is fine to	coarse, angular	
				100111111	3.90			to sub-angular of mudstone. (weathere		4 =
										=
										5 —
										6 -
]
										=
										7 -
										8 🚽
]
										=
										9 —
										10 -
						1	1	I		

1. Complete. 2. Refused on weathered MUDSTONE bedrock at 3.90 m bgl. 3. Monitoring well installed, response zone 1.00 m to 3.60 m bgl.

Į.		<u> </u>	7			Bc	reh	ole Log	Borehole N WS106	
		- U				DC) CIN	oic Log	Sheet 1 of	
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:	326702E - 363692N	Hole Type WS	
Locati	on:	Buckley					Level:		Scale 1:50	
Client:		Alan Jol	nnston	Partnership			Dates:	01/09/2020	Logged By V. Wilkinso	
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description	v. vviiitiino	
Well	Water Strikes	Depth (m) 0.10 0.50 1.00 1.00 2.00 2.00	Type ES U D SPT		0.20 0.50	Level (m)	Legend	Stratum Description Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly g CLAY. Gravel is fine to coarse, sub-ang rounded of mudstone and sandstone. Dense grey GRAVEL. Gravel is fine to to sub-angular of mudstone. (weathere End of Borehole at 2.38m	se, sub-angular sandy gravelly to sub-rounded ravelly sandy jular to sub-	3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
										8 9 10

1. Complete. 2. Refused on weathered MUDSTONE bedrock at 2.38 m bgl. 3. Monitoring well installed, response zone 1.00 m to 2.00 m bgl.

									Borehole No	0.
K		23 1				Вс	reh	ole Log	WS106	A
							_		Sheet 1 of	
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:	326702E - 363689N	Hole Type WS	
Location	on:	Buckley					Level:		Scale	
									1:50 Logged By	,
Client:		Alan Joh	nston	Partnership		1	Dates:	01/09/2020	V. Wilkinson	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results		, ,		Dark brown slightly gravelly sandy CLA	Y (Topsoil) with	_
					0.20			frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone.	- /]
					0.50			Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular	sandy gravelly to sub-rounded	_
								of mudstone, sandstone and coal. Very stiff high strength brown slightly g	/	=
		1.00 1.00	D SPT	N=21 (5,4/5,6,5,5)				CLAY. Gravel is fine to coarse, sub-ang rounded of mudstone and sandstone.	ular to sub-	1 —
								Tourided of mudstone and sundstone.		=
										=
		0.00								-
		2.00 2.00	D SPT	N=29 (5,6/7,7,7,8)						2 —
					2.50					_
	2.50							Dense grey GRAVEL. Gravel is fine to to sub-angular of mudstone. (weathere	coarse, angular d bedrock)	-
2/252/2		2.80	SPT	50 (25 for 40mm/50 f 95mm)	or 2.88			End of Borehole at 2.88m		3 —
										3
										=
										4 —
										=
										_
										=
										5 —
										_
										=
										6 =
										=
										=
										7 —
										=
										_
										8 —
										9 —
										Ē
										=
										10 —

1. Complete. 2. Refused on weathered MUDSTONE bedrock at 2.88 m bgl. 3. Water strike encountered at 2.50 m bgl.

		23r)			Вс	reh	ole Log	Borehole N WS107	
								010 200	Sheet 1 of	
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:	326758E - 363668N	Hole Type WS	•
Locati	on:	Buckley					Level:		Scale 1:50	
Client:		Alan Jol	nnston	Partnership			Dates:	02/09/2020	Logged By V. Wilkinso	
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description	V. VVIIKIIISO	
Well	Strikes	Depth (m) 0.10	Type	Results	(m)	(m)	Logona	Dark brown slightly gravelly sandy CLA	Y (Topsoil) with	
		0.50	U		0.20 0.50			frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular	se, sub-angular	
		1.00 1.00	D SPT	N=24 (6,6/6,6,5,7)			of mudstone, sandstone and coal. Very stiff high strength brown slightly gr CLAY. Gravel is fine to coarse, sub-ang rounded of mudstone and sandstone. medium red brown fine to medium SAN 1.80 m and 2.20 m bgl. Becoming very 3.20 m bgl. Becoming very stiff very hig 3.00 m bgl.	ular to sub- Band of fine to ID between gravelly at	1 —
		2.00 2.00	D SPT	N=24 (3,4/4,5,7,8)			3		2 —
		3.00 3.00	D SPT	50 (10,13/50 for 255mm)	3.41			End of Borehole at 3.41m	ı	3 —
										4 —
										5 —
										6 —
										7 —
										8 —
										9 —
										10 —

1. Complete. 2. Refused on stiff CLAY at 3.41 m bgl. 3. Monitoring well installed, response zone 1.00 m to 3.00 m bgl.

Borehole Log Wat Street Project Name: Weil Street Project No.			- 0 -							Borehole N	0.
Project Name: Well Street Project No. 14278 Co-ords 326785E - 363748N Hole Type Scale 1.50	4		231				Вс	oreh	ole Log	WS108	3
Alan Johnston Partnership								1			
District	Projec	t Name:	Well Str	eet				Co-ords:	326785E - 363746N		÷
Client: Alan Johnston Partnership Well Water Sample and In Situ Testing (m) Type Results Depth (m) Type Results 0 20 0 20 0 50 0 50 0 50 0 50 Dark brown slighty gravely sendy CLAY (Repeat) with frequent postels. Cerevis life to coarse, sub-angular poster	Locati	on:	Buckley					Level:			
Water Sample and in Situ Testing Strikes Depth (m) Type Results Ca 20 Ca 50	Client:		Alan Joh	nston	Partnershin			Dates:	02/09/2020	Logged By	
Strikes Depth (m) Type Results (m) (m) Support Strikes Depth (m) Type Results 0.20 0.50	Olicit.						T	Dates.	02/03/2020	V. Wilkinso	n
Dark brown slightly gravely sandy CLAY (Gospoil) to sub-counse, sub-angular to sub-counse, sub-angular to sub-counse, sub-angular to sub-counse, sub-angular to sub-counsed or musicione. 1.00 D 1.00 SPT N=18 (4.4/4.4.5.5) N=18 (4.4/4.4.5.5) N=18 (4.4/4.5.5) N=23 (4.4/4.5.5) N=23 (4.4/4.5.5) N=23 (4.4/4.5.5) N=23 (4.4/4.5.5.6) A.00 SPT SO (8.1050 for 170mm) 4.32 End of Borehole at 4.32m End of Borehole at 4.32m	Well	Water Strikes						Legend	Stratum Description		
1,00				-71		0.20			Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars	Y (Topsoil) with se, sub-angular	
1.00 D 1.00 SPT N=18 (4.4/4.4.5.5) N=18 (4.4/4.4.5.5) N=18 (4.4/4.5.5.9) N=22 (5.4/6.5.6.6) 4.00 SPT SO (8.10/00 for 170/mm) 4.32 End of Boretole at 4.32m End of Boretole at 4.32m						0.50			to sub-rounded of mudstone. Stiff orange brown mottled grey slightly	sandy gravelly]
1.00 SPT N=18 (4,4/4,4,5,5) CLAW. Gravel is fine to coarse, sub-angular to sub-rounded of mustorn and anisotropy and sub-rounded of mustorn and sub-ro									of mudstone, sandstone and coal.	1	
2.00 D SPT N=23 (4.4/4.55.9) 3.00 3.00 D SPT N=22 (5.4/5.5.6.6) 4.00 SPT 50 (8.10/50 for 170mm) 4.32 End of Borehole at 4.32m					N=18 (4.4/4.4.5.5)	,			CLAY. Gravel is fine to coarse, sub-and	gular to sub-	1 =
2.00 SPT N=23 (4.4/4,5,5,9) 3.00 3.00 SPT N=22 (5.4/5,5,6,6) 4.00 SPT 50 (8.10/50 for 170mm) 4.32 End of Borehole at 4.32m 6					(,,,,,,,				stiff very high strength at 4.00 m bgl.	becoming very]
2.00 SPT N=23 (4.4/4,5,5,9) 3.00 3.00 SPT N=22 (5.4/5,5,6,6) 4.00 SPT 50 (8.10/50 for 170mm) 4.32 End of Borehole at 4.32m 6											=
3.00 3.00 SPT N=22 (5.4/5.5.6.6) 4.00 SPT 50 (8.10/50 for 170mm) 4.32 End of Borehole at 4.32m				D							2 -
3.00 3.00 SPT N=22 (6.4/5,5.6.6) 4.00 SPT 50 (8.10/50 for 170mm) 4.32 End of Borehole at 4.32m 5			2.00	SPT	N=23 (4,4/4,5,5,9)						=
3.00 3.00 SPT N=22 (6.4/5,5.6.6) 4.00 SPT 50 (8.10/50 for 170mm) 4.32 End of Borehole at 4.32m 5											
3.00 3.00 SPT N=22 (6.4/5,5.6.6) 4.00 SPT 50 (8.10/50 for 170mm) 4.32 End of Borehole at 4.32m 5			3 00	D							3 =
170mm) 4.32 End of Borehole at 4.32m 5		3.00	3.00	SPT	N=22 (5,4/5,5,6,6)						
170mm) 4.32 End of Borehole at 4.32m 5											
170mm) 4.32 End of Borehole at 4.32m 5											
6 — 7 — 9 — 9 — 9 — 9 — 9 — 9 — 9 — 9 — 9	Y/)\\\//		4.00	SPT	50 (8,10/50 for 170mm)						4 -
	(////////					4.32			End of Borehole at 4.32n	n	
											5 —
]
											6 =
											=
											7 =
											=
											=
											8 =
											9 -
											=
											10 -

1. Complete. 2. Refused on weathered MUDSTONE bedrock at 4.32 m bgl. 3. Water strike encountered at 3.00 m bgl. 4. Monitoring well installed, response zone 1.00 m to 4.00 m bgl.

		- 0 -							Borehole N	О.
		3 31				Вс	oreh	ole Log	WS109	
									Sheet 1 of	
Projec	t Name:	Well Str	eet		Project No. 4278		Co-ords:	326812E - 363711N	Hole Type WS	•
Locati	on:	Buckley					Level:		Scale	
Locati	OII.	Buckley					LCVCI.		1:50	
Client:	I I	Alan Joh	nnston	Partnership			Dates:	02/09/2020	Logged By V. Wilkinso	
Well	Water Strikes	Sample Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.10	ES	rtodato	0.20			Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coar	AY (Topsoil) with se, sub-angular	
								to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal.	/ sandy gravelly to sub-rounded	-
		1.00 1.00 1.50	D SPT U	N=22 (6,7/6,6,5,5)	1.00			Very stiff high strength brown slightly g CLAY. Gravel is fine to coarse, sub-and rounded of mudstone and sandstone. I stiff very high strength at 2.00 m bgl. B	gular to sub- Becoming very	1 —
		2.00	D	N 00 (5 5/7 0 0 40)				stiff high strength at 3.00 m bgl. Becon very high strength at 4.00 m bgl.	ning very stiff	2 —
		2.00	SPT	N=33 (5,5/7,8,8,10)						-
		3.00 3.00	D SPT	N=22 (9,7/5,6,6,5)						3 -
		4.00 4.00	D SPT	50 (5,6/50 for 235mn						4 —
					4.45		* * * * . * *	End of Borehole at 4.39n	n	-
										5 —
										6 —
										7 —
										8 —
										9 —
										10 —

1. Complete. 2. Refused on stiff CLAY at 4.39 m bgl. 3. Monitoring well installed, response zone 1.00 m to 4.00 m bgl.

	(<u> </u>)			Вс	oreh	ole Log	Borehole N WS110	
Proje	ct Name:	Well Str	eet		Project No.		Co-ords:	326807E - 363645N	Sheet 1 of Hole Type WS	
Locat	ion:	Buckley		'			Level:		Scale 1:50	
Client	:	Alan Joh	nnston	Partnership			Dates:	02/09/2020	Logged By V. Wilkinso	
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description	V. VVIIKII150	
vveii	Strikes	Depth (m)	Type	Results	(m)	(m)	Legend		Y (Topsoil) with	
		Depth (m) 0.10 1.00 1.00 2.00 2.00 2.50 3.00 3.00 4.00 4.00 5.00 5.00	D SPT U	N=17 (3,4/4,4,4,5) N=22 (5,5/5,5,6,6) N=42 (6,8/11,10,10,1 N=34 (5,6/8,8,8,10) N=34 (7,7/7,8,9,10)	0.20			Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly g CLAY. Gravel is fine to coarse, sub-ang rounded of mudstone and sandstone. Is stiff very high strength at 3.00 m bbl E high strength at 4.00 m bgl.	ravelly sandy gravelly to sub-rounded ravelly sandy gravelly sandy gular to sub-Becoming very Becoming stiff	3 3 4 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
										10 —

1. Complete. 2. Monitoring well installed, response zone 1.00 m to 5.00 m bgl.

· ·	©e3p				Вс	reh	ole Log	Borehole N WS111		
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:	326817E - 363604N	Sheet 1 of Hole Type WS	
Locati	on:	Buckley			11210		Level:		Scale 1:50	
Client:		Alan Joh	nnston	Partnership			Dates:	02/09/2020	Logged By V. Wilkinso	
Well	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description	v. wiikiiiso	
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Dark brown slightly gravelly sandy CLA	Y (Topsoil) with	
		1.00 1.00	D SPT	N=18 (3,4/4,5,4,5)	0.30			frequent rootlets. Gravel is fine to coan to sub-rounded of mudstone. Very stiff high strength orange brown n slightly sandy gravelly CLAY. Gravel is angular to sub-rounded of mudstone, s coal.	se, sub-angular nottled grey fine to coarse,	1
		2.00 2.00	D SPT	N=33 (6,6/7,8,8,10	2.00			Very stiff very high strength brown sligt sandy CLAY. Gravel is fine to coarse, s sub-rounded of mudstone and sandsto very stiff high strength at 3.00 m bgl. B stiff very high strength at 4.00 m bgl.	ub-angular to ne. Becoming	2 -
		3.00 3.00	D SPT	N=33 (6,6/8,9,8,8))					3 -
		4.00 4.00	D SPT	50 (8,10/50 for 250mm)	4.40			End of Borehole at 4.40n	1	4 —
										5 —
										6 —
										7 —
										8 —
										9 —
										10 —

1. Complete. 2. Refused on stiff CLAY at 4.40 m bgl. 3. Monitoring well installed, response zone 1.00 m to 4.00 m bgl.

K	©e3p				Вс	reh	ole Log	Borehole N WS112	2	
Projec	t Name:	Well Str	eet		Project No.		Co-ords:	326881E - 363679N	Sheet 1 of Hole Type WS	
Location	on:	Buckley			14270		Level:		Scale 1:50	
Client:		Alan Jol	nnston	Partnership			Dates:	02/09/2020	Logged By V. Wilkinso	
Well	Water			n Situ Testing	Depth	Level	Legend	Stratum Description		
Well	Water Strikes	Depth (m) 0.10 1.00 1.00 2.00 2.00 3.00 3.00 4.00 4.00	Type ES D SPT D SPT D SPT	Results N=17 (3,4/4,4,4,5) N=24 (4,4/4,5,7,8) N=43 (3,6/7,10,13,13) 50 (10,13/50 for 180mm)	(m) 0.20 0.50	Level (m)	Legend	Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly grounded of mudstone and sandstone. Stiff very high strength at 3.00 m bgl. End of Borehole at 4.33m End of Borehole at 4.33m	r sandy gravelly to sub-rounded ravelly sandy gular to sub-Becoming very	3 1 2 3 4 5 6 7 8 9 9 1 1 1 1 1 1 1 1
										10 —

1. Complete. 2. Refused on stiff CLAY at 4.33 m bgl. 3. Monitoring well installed, response zone 1.00 m to 4.00 m bgl.

	- 0				Borehole No.				
	e 31				Вс	reh	ole Log	RB101	
				Project No.				Sheet 1 of Hole Type	
Project Nar	ne: Well Str	eet		14278		Co-ords:		ВН	
ocation:	Buckley	,				Level:		Scale 1:50	
Client:	Alan Jo	hnston	Partnership			Dates:	03/09/2020	Logged By	
Wat	er Sample	and Ir	n Situ Testing	Depth	Level			V. Wilkinso	n
Well Strik		Туре	Results	(m)	(m)	Legend	Stratum Description		
SITIK	Depth (m)	Туре	Results	3.40 8.30			Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Very stiff brown slightly gravelly sandy fine to coarse, sub-angular to sub-roun mudstone and sandstone. Grey MUDSTONE.	AY (Topsoil) with se, sub-angular CLAY. Gravel is	1 2 3 4 5 6 7 7 8 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9
				8.80		XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXX	Brey SILTSTONE.		9 —
Remarks Complete.						× × ×		Фe3	

	- 0			Borehole No.				
	e3p			Вс	reh	ole Log	RB101	1
							Sheet 2 of	
Project Name	: Well Street		Project No. 14278		Co-ords:		Hole Type BH	е
Location:	Buckley				Level:		Scale	
Client:	Alan Jahnatar	Dortnorobin			Dates:	03/09/2020	1:50 Logged B	у
	Alan Johnstor	-			Dates.	03/09/2020	V. Wilkinso	on T
Well Water Strikes		In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	Bopar (III)	results			×××××	Brey SILTSTONE.		<u> </u>
					$\times \times $			=
					$\times \times $			=
					$\times \times $			11 —
					$\times \times $			=
					(=
			11.70		$\times \times $	Dark grey SILTSTONE.		1 =
					$\times \times $			12 —
					$\times \times \times \times \times$] =
					$\times \times $			=
					:			13 —
			13.30		X X X X X X X X X X X X X X X X X X X	Dark grey SILTSTONE with coal traces		4 =
					× × × × ×	Bank groy ore rone with took traces	'-	=
					$\times \times $			=
					$\times \times $			14 —
					(=
					$\times \times $			=
					X X X X X X X X X X X X X X X X X X X			15 —
					$\times \times $			-
					$\times \times $			=
			15.80		$\times \times $	Grey SANDSTONE.		1 =
								16 -
			16.40		×××××	Grey SILTSTONE.		1 =
					× × × × ×			-
					$\times \times \times \times \times$			17 _
					$\times \times $			=
					×××× ×××××			-
					X X X X X			18 —
			18.20		$\times \times $	Grey SANDSTONE.		-
] =
			18.70		· · · · · · · · · · · · · · · · · · ·	Dark grey SILTSTONE.		1 =
			40.00		×××× ×××××			19 _
			19.20		incorrect incorrect incorrect in key key key incorrect incorrect incorrect in	Red MARL.] =
					key key key Incorrect incorrect incorrect if key key key			=
					incorrect incorrect incorrect in key key key			20 -
Remarks								1
Complete.								On

· ·	9	e3p				ole Log	RB101			
Projec	t Name:	Well Str			Project No. 14278		Co-ords:		Sheet 3 of Hole Type BH	
ocati	on:	Buckley					Level:		Scale 1:50	
Client:		Alan Jol	nnston	Partnership			Dates:	03/09/2020	Logged By V. Wilkinso	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results	()	()	incorrect incorrect incorrect it	Red MARL.		_
					23.10		with the control of t	Grey SANDSTONE. Grey SILTSTONE with mudstone band	S.	21
							X X X X X X X X X X X X X X X X X X X			28 —
							X X X X X X X X X X X X X X X X X X X			29 —
					30.00		XXXX	End of Borehole at 30.00r	n	30 —
Remai	·ks		1				1			

Complete.

		0				Borehole No.				
K		231				Вс	oreh	ole Log	RB102	2
							Т	-	Sheet 1 of	
rojec	t Name:	Well Str	eet		Project No. 14278		Co-ords:		Hole Type BH)
					14270				Scale	
.ocati	on:	Buckley					Level:		1:50	
lient:		Alan Jo	hnston	Partnership			Dates:	03/09/2020	Logged By	
									V. Wilkinso	'n T
Well	Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
	Ottikos	Depth (m)	Туре	Results		(111)	X//XX//XX/	Dark brown slightly gravelly sandy CL	AY (Topsoil) with	
					0.10 1.50			Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coar to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff brown slightly gravelly sandy fine to coarse, sub-angular to sub-rour mudstone and sandstone. Dense brown medium SAND.	rse, sub-angular y sandy gravelly r to sub-rounded	1
										9 -
lemai	·ks							<u> </u>		
Comp									Фe3	3p

	200					Borehole No.				
		23r	33p			Вс	reh	ole Log	RB102	
					Project No.				Sheet 2 of 3 Hole Type	
roject	Name:	Well Str	eet		14278		Co-ords:		ВН	
.ocatio	n:	Buckley	•				Level:		Scale 1:50	
lient:		Alan Jol	hnston	Partnership			Dates:	03/09/2020	Logged By V. Wilkinso	
	Water	Sample	e and li	n Situ Testing	Depth	Level			V. WIIKIIISOI	
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
								Grey MUDSTONE.		
										11 -
					11.90		× × × × ×	Grey SILTSTONE.		12 -
							X X X X X X X X X X X X X X X X X X X			
							$\times \times \times \times \times$			-
							× × × × × × × × × × × × × × × × × ×			13 -
							×××× ×××××			10
							X X X X X X X X X X X X X X X X X X X			-
							×××××			
							$\times \times \times \times \times$			14 -
							× × × × × × × × × × × × × × × × × ×			
							×××× ×××××			
							X X X X X X X X X X X X X X X X X X X			15 -
							$\times \times $			
							× × × × × × × × × × × × × × × × ×			
							×××× ×××××			16 -
							:			10
							$\times \times \times \times \times$			
							XXXXX			
							× × × × × × × × × × × × × × × × × ×			17 -
							XXXXX			
					17.80		X X X X X	O OANDOTONE		
								Grey SANDSTONE.		18 -
					18.40			D. I. OHTOTONIE		
							$\times \times $	Dark grey SILTSTONE.		-
							X X X X X X X X X X X X X X X X X X X			19 -
							$\times \times $			
							× × × × × × × × × × × × × × × × × ×			-
							×××××			
										20 -
temarl Comple									* A ?	2r

200						Borehole No.				
K		e3r				Вс	reh	ole Log	RB102	
		'A/ II O/			Project No.				Sheet 3 of Hole Type	
Projec	t Name:	Well Str	eet ———		14278		Co-ords:		ВН	
Location	on:	Buckley					Level:		Scale 1:50	
Client:		Alan Jol	hnston	Partnership	-		Dates:	03/09/2020	Logged By	
	Water			n Situ Testing	Depth	Level			V. Wilkinso	n
Well	Strikes	Depth (m)	Туре		(m)	(m)	Legend	Stratum Description		
							$\times \times $	Dark grey SILTSTONE.		-
							$\times \times $			
							(=
							(21 —
							× × × × × ×			
							$\times \times $			=
							$\times \times $			22 —
							$\times \times $			
							:			-
							$\times \times $			
							$\times \times $			23 —
							(
							$\times \times $			
							:			24 —
					24.30		××××	Grey MUDSTONE.		- -
										-
										25 —
										_
										_
										26 —
										_
										-
					26.90		XXXXX	Dark grey SILTSTONE.		27 —
							$\times \times $			_
							(_
							$\times \times $			28 —
							(20 -
							$\times \times $			_
							× × × × ×			_
							(29 —
							X			_
							(_
					30.00		× × × × ×	End of Borehole at 30.00	m	30 —
Remar	ks	1								
Compl	ete									7

Project Name: Well Street Project No. 14278 Co-ords: Level:	RB103 neet 1 of 3 fole Type BH Scale 1:50 ogged By Wilkinson
Project Name: Well Street Project No. 14278 Co-ords: Level: Co-ords: Dates: 03/09/2020 Legend Stratum Description Depth (m) Type Results Dark brown slightly gravelly sandy CLAY (Tops frequent rootlets. Gravel is fine to coarse, substout of mudstone. Stiff orange brown mottled grey slightly sandy CLAY (Tops frequent rootlets. Gravel is fine to coarse, angular to sub-rounded of mudstone.	lole Type BH Scale 1:50 ogged By
ocation: Buckley Level: Sample and In Situ Testing Depth (m) Type Results	BH Scale 1:50 ogged By
Color Colo	1:50 ogged By
Color Colo	ogged By
Well Water Strikes Sample and In Situ Testing Depth (m) Level (m) Legend Stratum Description	
Strikes Depth (m) Type Results (m) (m) Legend Stratum Description O.20 Dark brown slightly gravelly sandy CLAY (Tops frequent rootlets. Gravel is fine to coarse, subto sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy CLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone.	
Depth (m) Type Results (III) (III) 0.20 Dark brown slightly gravelly sandy CLAY (Tops frequent rootlets. Gravel is fine to coarse, substoush-rounded of mudstone. Stiff orange brown mottled grey slightly sandy cLAY. Gravel is fine to coarse, angular to sub-rounded of mudstone.	I .
0.20 frequent rootlets. Gravel is fine to coarse, sub- to sub-rounded of mudstone. Stiff orange brown mottled grey slightly sandy of CLAY. Gravel is fine to coarse, angular to sub-	oil) with
Stiff orange brown mottled grey slightly sandy of CLAY. Gravel is fine to coarse, angular to sub-r	ngular
of mudstone, sandstone and coal.	ravelly
	burided
1.10	1
1.10 ———— Very stiff high strength brown slightly gravelly s ————————————————————————————————————	ub-
rounded of mudstone and sandstone.	
	2
	3
4.00 Dense grey GRAVEL. Gravel is fine to coarse,	angular 4
to sub-angular of mudstone. (weathered bedro	ck)
	5
	6
	7
7.60 Grey SANDSTONE.	
GIEV SANDSTONE.	
	8
8.90 SILTSTONE.	9
	10
emarks	
Complete.	102r

		0:0			Borehole No.				
K		e3p			Вс	reh	ole Log	RB103	
				Project No.				Sheet 2 of Hole Type	
roject	Name:	Well Street	t	14278		Co-ords:		Hole Type BH	,
.ocatio	n:	Buckley				Level:		Scale 1:50	
lient:		Alan Johns	ston Partnership			Dates:	03/09/2020	Logged By	
								V. Wilkinso	n
	Water Strikes		nd In Situ Testing ype Results	Depth (m)	Level (m)	Legend	Stratum Description		
				11.80		X X X X X X X X X X X X X X X X X X X	Grey SILTSTONE. Grey MUDSTONE with sandstone band	ds.	11 —
				15.20			Dark grey SILTSTONE with coal traces		14 —
				19.10		XXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX	Grey SANDSTONE.		17
lemark	(S		1		<u> </u>				
Comple	ete.) (

· ·		e3p				ole Log	RB103 Sheet 3 of 3			
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:		Hole Type BH	
Locati	on:	Buckley	,		1.12.5		Level:		Scale 1:50	
Client:		Alan Jol	hnston	Partnership			Dates:	03/09/2020	Logged By V. Wilkinso	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results	20.20	()		Grey SANDSTONE.		_
					22.80		XXXX XXX X	Dark grey SILTSTONE with mudstone	bands.	21 —
					26.80		X X X X X X X X X X X X X X X X X X X	Grey SANDSTONE with mudstone bar	nds.	25
					30.00		* * * * * * *	End of Borehole at 30.00	m	30 —
Remai	ks									

Complete.

	100						Borenole No.			
		3 31				Вс	preh	ole Log	RB104	
					Dania at Na				Sheet 1 of	
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:		Hole Type BH	9
Locati	on:	Buckley	,		-		Level:		Scale 1:50	
01: 1		A1 1					D .	00/00/0000	Logged By	y
Client:				Partnership			Dates:	03/09/2020	V. Wilkinso	
Well	Water Strikes	Sample Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Deptil (III)	Туре	Results	0.20			Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coar	AY (Topsoil) with	-
								to sub-rounded of mudstone. Stiff orange brown mottled grey slightly	/	1 =
								CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal.	to sub-rounded	-
								or mudstone, sandstone and coal.		1 -
										' =
					1.30			Very stiff high strength brown slightly g CLAY. Gravel is fine to coarse, sub-and	ravelly sandy	1 =
								rounded of mudstone and sandstone.	Julai to Sub-	-
										2 -
										_
							<u> </u>			_
									3 —	
			3.30			Light grey MUDSTONE.		1 -		
								-		
										4 -
										_
					4.60		××××	Grey brown SILTSTONE.		=
							:			5 —
							<pre></pre>			
							<pre></pre>			_
							:			-
							:			6 -
							:			0 -
					6.50		:			_
					0.30		<pre></pre>			-
							<pre></pre>			-
										7 -
										_
							X			-
							<pre></pre>			
							X			8 —
							X X X X X			_
							XXXXX			-
					8.90		(Grey SANDSTONE.		9 —
								,		9 -
										-
										=
					9.80		$\times \times $	Grey SILTSTONE.		10 -
										10
Remai Comp) n

©e3p									Borehole No.	
					Borehole Log			ole Log	RB104	
Project Name: Well Street					Project No.		Co-ords:		Sheet 2 of 3 Hole Type BH	
					14278		Level:			
								1:50 Logged By	/	
JIICITE.	I	Alan Johnston Partnership					Dates:	03/09/2020	V. Wilkinso	n
Well	Water Strikes	Depth (m)	Sample and In Situ Testing n (m) Type Results		Depth (m)	Level (m)	Legend	Stratum Description		
	Strikes	Depth (m)	Type	Results	14.20	(m)		Dark grey MUDSTONE with siltstone b		11 12 13 14 15 16 17 18 19 19 19 19 19 19 19
							× × × × × × × × × × × × × × × × × × ×			20 -
Remai		<u> </u>	I		1	I				
Complete.										

		<u> </u>							Borehole N	lo.	
©e3p				Borehole			ole Log	RB104			
							1		Sheet 3 of		
Project Name: Well Street			Project No. 14278		Co-ords:	Co-ords:		Hole Type BH			
Location: Buckley					Level:		Scale 1:50				
Client: Alan Johnston Partnership					Dates: 03/09/2020		Logged By				
	Water	Sample	and l	n Situ Testing	Depth	Level		V. Wilkins		on	
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description			
							$\times \times \times \times \times$	Dark grey SILTSTONE with coal traces	í.		
							× × × × × × × × × × × × × × × × × ×			_	
							$\times \times $			_	
					04.00		XXXXX			21 —	
					21.20			Grey SANDSTONE.] =	
										-	
										22 —	
					22.10		×××××	Grey SILTSTONE.] =	
							X X X X X X X X X X X X X X X X X X X			_	
							×××××			-	
							XXXXX			23 —	
							X X X X X X X X X X X X X X X X X X X			=	
							×××× ×××××				
							X X X X X X X X X X X X X X X X X X X			24 _	
							$\times \times $			-	
					24.50		× × × × × × × × × × × × × × × × × ×	Dark grey SILTSTONE.		1 =	
							XXXX XXXX			25 —	
							XXXXX				
							X X X X X X X X X X X X X X X X X X X			-	
							× × × × × × × × × × × × × × × × ×			=	
					26.20		:	0 00 707007		26 —	
							$\times \times $	Grey SILTSTONE.		_	
							X X X X X X X X X X X X X X X X X X X				
							$\times \times $			27 —	
							× × × × × × × × × × × × × × × × × ×				
							×××× ×××××				
							X X X X X X X X X X X X X X X X X X X			28 —	
							$\times \times \times \times \times$			-	
							× × × × × × × × × × × × × × × × ×				
							X X X X X X X X X X X X X X X X X X X				
					29.10		X X X X X			29 —	
								End of Borehole at 30.00r	n	30 -	
Remark			1	I		1					
Comple	ete.									$\mathbf{D}_{\mathbf{D}}$	

	0						Borehole N	0.			
	23 D	Во		rehole Log		RB105					
					1		Sheet 1 of				
Project Name: Well Street			Project No. 14278		Co-ords:		Hole Type BH				
Location:			Level:		Scale 1:50						
Client: Alan Johnston Partnership					Dates: 03/09/2020		Logged By V. Wilkinso				
Well Water Strikes		In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description					
Strikes	Depth (m) Type	Results			\//\.\\/\.\\	Dark brown slightly gravelly sandy CLA	V (Tanasil) with				
			0.30			frequent rootlets. Gravel is fine to coar to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angulai of mudstone, sandstone and coal.	se, sub-angular / sandy gravelly	1 —			
			2.90			Very stiff high strength brown slightly g CLAY. Gravel is fine to coarse, sub-ang rounded of mudstone and sandstone.	ravelly sandy gular to sub-	3			
			4.80		- × - × - × - × - × - × - × - × - × - ×	Brown medium SAND.		5 —			
			6.90			Brown clayey MUDSTONE		7			
			8.60			Grey SANDSTONE.		9 —			
			9.80		×××××	Grey SILTSTONE with mudstone band	ls.	10 —			
Remarks Complete.											

									Borehole N	0.
K		23r				Вс	reh	ole Log	RB105	
					Project No.				Sheet 2 of Hole Type	
rojec	t Name:	Well Str	eet		14278		Co-ords:		BH	
.ocati	on:	Buckley					Level:		Scale	
									1:50 Logged B	,
lient:		Alan Jol	nnston	Partnership			Dates:	03/09/2020	V. Wilkinso	
Well	Water	Sample	and Ir	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)		Grey SILTSTONE with mudstone band	•	
							$\times \times $	Grey SILTSTONE With mudstone band	S.	
							(
							× × × × ×]
							(11 -
							$\times \times $]
							$\times \times $			1 - 1
							$\times \times $			
							$\times \times $			12 -
							$\times \times $			
							$\times \times $			=
					12.80		$\times \times $	Dark grey SILTSTONE with thin coal tr	aces	
							<pre></pre>	Bank groy Olero Forte Martin Goal a		13
							\times \times \times \times			1 1
							$\times \times $			
							$\times \times $			=
							$\times \times $			14 —
							$\times \times $			
							$\times \times \times \times \times$			1 3
					14.90		×××× ××××	Grey MUDSTONE with sandstone ban-	de .	Ĭ ╡
								Grey Widde Forte with sandstone barr	.	15 —
										16
]
										=
										17 —
										=
					17.60		key key key]
							Incorrect incorrect incorrect in key key key	Red brown MARL.		
							incorrect incorrect incorrect ii key key key Incorrect incorrect incorrect ii			18
							key key key Incorrect incorrect in key key key			
							incorrect incorrect incorrect in key key key			=
							key key key incorrect incorrect in			=
							key key key Incorrect incorrect in key key key			19 —
							Incorrect incorrect incorrect in key key key Incorrect incorrect incorrect in			=
							key key key Incorrect incorrect in			
							key key key incorrect incorrect incorrect it key key key			
										20 —
temar Compl)
P	•									< n

		<u> </u>							Borehole N	0.
K		23r				Вс	reho	ole Log	RB105	
					D : (N		1		Sheet 3 of	
Projec	t Name:	Well Str	eet		Project No. 14278		Co-ords:		Hole Type BH	,
Location	on:	Buckley					Level:		Scale 1:50	
Client:		Alan Joh	nnston	Partnership			Dates:	03/09/2020	Logged By V. Wilkinso	
	Water	Sample	and Ir	n Situ Testing	Depth	Level				
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
			7		21.80		moment moment hay by key hay hay hay hay hay hay hay hay hay ha	Grey SILTSTONE with darker bands a bands.	nd sandstone	21 —
					24.60 25.40		× × × × × × × × × × × × × × × × × × ×	Strong grey SANDSTONE.		25 —
					20.10		X X X X X X X X X X X X X X X X X X X	Grey SILTSTONE with mudstone band	s.	26 —
							X X X X X X X X X X X X X X X X X X X			27 -
							XXXX XXXXX XXXX XXXX XXXX XXXX XXXX XXXX			28
					30.00		× × × × ×	End of Borehole at 30.00	m	30 —
Remar	ks					<u> </u>				<u> </u>

Complete.

Depth (m) 0.20	Level (m)	Co-ords: Level: Dates:	O3/09/2020 Stratum Description Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly gr CLAY. Gravel is fine to coarse, sub-ang rounded of mudstone and sandstone.	AY (Topsoil) with se, sub-angular v sandy gravelly to sub-rounded	3
Depth (m) 0.20		Level: Dates:	Stratum Description Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly gravel is fine to coarse, sub-and CLAY. Gravel is fine to coarse, sub-and	Hole Type BH Scale 1:50 Logged By V. Wilkinson AY (Topsoil) with se, sub-angular v sandy gravelly to sub-rounded	n
0.20		Dates:	Stratum Description Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly gravel is fine to coarse, sub-and CLAY. Gravel is fine to coarse, sub-and	1:50 Logged By V. Wilkinson AY (Topsoil) with se, sub-angular v sandy gravelly to sub-rounded	n -
0.20			Stratum Description Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly gravel is fine to coarse, sub-and CLAY. Gravel is fine to coarse, sub-and	Logged By V. Wilkinson AY (Topsoil) with se, sub-angular v sandy gravelly to sub-rounded	n -
0.20		Legend	Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly gr CLAY. Gravel is fine to coarse, sub-and CLAY. Gravel is fine to coarse, sub-and	AY (Topsoil) with se, sub-angular v sandy gravelly to sub-rounded	-
0.20	(m)	Legend	Dark brown slightly gravelly sandy CLA frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly gr CLAY. Gravel is fine to coarse, sub-and CLAY. Gravel is fine to coarse, sub-and	AY (Topsoil) with se, sub-angular v sandy gravelly to sub-rounded	1 -
			frequent rootlets. Gravel is fine to coars to sub-rounded of mudstone. Stiff orange brown mottled grey slightly CLAY. Gravel is fine to coarse, angular of mudstone, sandstone and coal. Very stiff high strength brown slightly gravel is fine to coarse, sub-and CLAY. Gravel is fine to coarse, sub-and	se, sub-angular sandy gravelly to sub-rounded ravelly sandy	1 -
			CLAY, Gravel is fine to coarse, sub-and	ravelly sandy gular to sub-	
					2 -
3.80			Light grey MUDSTONE.		3 -
					6 -
7.90		**************************************	Grey sandy SILTSTONE with occasion sandstone bands.	al strong	9 -
	7.90	7.90		Grey sandy SILTSTONE with occasion sandstone bands.	Grey sandy SILTS TONE with occasional strong sandstone bands.

		0							Borehole N	o.
		e3r				Вс	reh	ole Log	RB106	3
									Sheet 2 of	
Project	Name:	Well Str	eet		Project No. 14278		Co-ords:		Hole Type BH	÷
Locatio	n:	Buckley					Level:		Scale 1:50	
Client:		Alan Jol	nnston	Partnership			Dates:	03/09/2020	Logged By	
	Water	Sample	and li	n Situ Testing	Depth	Level			V. Wilkinso	'n
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
							$\times \times $	Grey sandy SILTSTONE with occasion sandstone bands.	al strong	-
							$\times \times $			-
							$\times \times $			
							$\times \times \times \times$			11 -
							$\times \times $			
							$\times \times $			
							(-
							(12 —
							(
							(]
							(=
							×××× ×××××			13 —
							× × × × ×			"
							$\times \times $]
							(
							$\times \times $			14 —
							$\times \times $			``
							$\times \times $]
							$\times \times $			
							$\times \times $			15 —
							$\times \times $			
							$\times \times $]
							$\times \times $			-
							$\times \times $			16 —
							$\times \times $			-
							$\times \times $]
							$\times \times $			
							X			17 —
							(
							(=
							× × × × × ×			=
							× × × × ×			18 —
							× × × × ×			-
							× × × × ×			=
							×××× ××××			
							$\times \times $			19 —
							$\times \times $			-
							$\times \times $]
							$\times \times $			
							\times \times \times \times			20 —
Remark	re									
Comple										20

Į		93p				Вс	reh	ole Log	RB106	6
Projec	t Name:	Well Str			Project No. 14278		Co-ords:		Hole Type BH	
Locati	on:	Buckley	,				Level:		Scale 1:50	
Client:		Alan Jol	hnston	Partnership			Dates:	03/09/2020	Logged By V. Wilkinso	
Well	Water		and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)	××××	Grey sandy SILTSTONE with occasions	al strong	_
					22.50			Sandstone bands. Dark grey MUDSTONE.	an surving	21
					26.10 26.80		XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXX	Strong grey SANDSTONE. Dark grey SILTSTONE.		26 —
Remai					30.00		X X X X X X X X X X X X X X X X X X X	End of Borehole at 30.00n	n	29 - 30 -
Comp	ete.								♥ e3	3p

APPENDIX VI CHEMICAL TESTING RESULTS

Veronique Wilkinson

e3p Taylor Road Urmston Manchester M41 7JQ

e: vwilkinson@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

04/09/2020

Analytical Report Number: 20-28594

Project / Site name: Well Street Samples received on: 03/09/2020

Your job number: 14-278 Samples instructed on/

Analysis started on:

Your order number: 14278-VW-E Analysis completed by: 11/09/2020

Report Issue Number: 1 **Report issued on:** 11/09/2020

Samples Analysed: 3 leachate samples - 15 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1613195	1613196	1613197	1613198
Sample Reference				TP104	TP105	TP107	TP108
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	1.00	0.60	0.10
Date Sampled				01/09/2020	01/09/2020	01/09/2020	01/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Time taken		1		None Заррпеа	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Constant	1			.0.1	.0.1	.0.1	.0.1
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	9.1	10	8.6
Total mass of sample received	kg	0.001	NONE	0.3	0.3	0.3	0.3
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	-	7.6	-	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	-	290	-	590
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	79	-	59
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.04	-	0.029
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	39.6	-	29.3
Sulphide	mg/kg	1	MCERTS	-	1.7	-	21
Total Sulphur	mg/kg	50	MCERTS	-	120	-	290
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	0.7	0.6	-
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH					_		_
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
openates rour Erri 10 mile	ilig/kg	5.0	LICERTS	` 0.00	` 0.00	` 0.00	` 0.00

Lab Sample Number				1613195	1613196	1613197	1613198
Sample Reference				TP104	TP105	TP107	TP108
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	1.00	0.60	0.10
Date Sampled				01/09/2020	01/09/2020	01/09/2020	01/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.8	6.2	6.7	7.5
Barium (aqua regia extractable)	mg/kg	1	MCERTS	84	-	170	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.58	-	0.97	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	-	0.2	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.2	< 0.2	< 0.2	0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	23	-	15
Copper (aqua regia extractable)	mg/kg	1	MCERTS	17	22	22	16
Lead (aqua regia extractable)	mg/kg	1	MCERTS	96	14	14	140
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	11	28	29	8.3
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	26	-	24	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	74	55	50	55
Petroleum Hydrocarbons							
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1613199	1613200	1613201	1613202
Sample Reference				TP109	TP111	WS104	TP112
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.90	0.10	0.40	1.00
Date Sampled				01/09/2020	01/09/2020	01/09/2020	01/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
		ion	atus				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	-	NONE	9.3	14	9	8.7
Total mass of sample received	-	N/A 0.001	NONE	0.3	0.3	0.3	1.1
Total mass of sample received	kg	0.001	NONE	0.3	0.3	0.3	1.1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	-	-	-				
pH - Automated	pH Units	N/A	MCERTS	-	7.4	-	8.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	-	640	-	280
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	29		55
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.014		0.028
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS		14.4		27.7
Sulphide	mg/kg	1.23	MCERTS	-	23	-	< 1.0
Total Sulphur	-1	50	MCERTS		330	-	93
Total Organic Carbon (TOC)	mg/kg %	0.1	MCERTS	-	-		0.5
	,,	0.2	HOLKIO				0.0
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0
	•						
Speciated PAHs				0.05	. 0.05	0.05	0.05
Naphthalene Asanashthulana	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05
Fluorene Phenanthrene	mg/kg	0.05	MCERTS			< 0.05	
Anthracene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.28
	mg/kg			< 0.05	< 0.05	< 0.05	0.28
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	0.25
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.25
Benzo(b)fluoranthene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.3
Benzo(k)fluoranthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.3
Benzo(a)pyrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
5 7 .	mg/kg	0.05	MCERTS	\ 0.03	< U.U.	\ 0.03	< 0.03
Total PAH Speciated Total EPA-16 PAHs	ma/ka	0.0	MCERTS	< 0.80	< 0.80	< 0.80	1.78
Speciated 10tal EFA-10 FALIS	mg/kg	0.8	MICERIS	< 0.00	< 0.00	< 0.00	1./0

Lab Sample Number				1613199	1613200	1613201	1613202
Sample Reference				TP109	TP111	WS104	TP112
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.90	0.10	0.40	1.00
Date Sampled				01/09/2020	01/09/2020	01/09/2020	01/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.4	12	6.9	6.1
Barium (aqua regia extractable)	mg/kg	1	MCERTS	77	-	56	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.66	-	0.81	-
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.4	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	23	-	19
Copper (aqua regia extractable)	mg/kg	1	MCERTS	18	32	23	20
Lead (aqua regia extractable)	mg/kg	1	MCERTS	11	230	23	15
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	22	19	26
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	18	-	24	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	42	140	46	48
Petroleum Hydrocarbons							
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1613203	1613204	1613205	1613206
Sample Reference				TP119	TP120	TP121	TP123
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.10	0.40	0.10
Date Sampled				02/09/2020	02/09/2020	02/09/2020	02/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Time raken			ъ	чоне заррнеа	топе заррнеа	топе заррнеа	Horic Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Strange Control				.0.1	.0.1	.01	.0.1
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	13	15	11
Total mass of sample received	kg	0.001	NONE	0.3	0.3	1.1	0.3
Ashastas in Cail	-	N/*	TOO (2000	Nias data at a	Nine data of the	Nias data at a	Night algo and a
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	=	7.1	7.2	-
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	-	680	420	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	47	170	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	i	0.024	0.086	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	i	23.6	85.8	-
Sulphide	mg/kg	1	MCERTS	-	16	< 1.0	-
Total Sulphur	mg/kg	50	MCERTS	-	390	150	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	2.9	-	-
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-
	5, 5						
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.46	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.15	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	< 0.05
Pyrene Renzo(a)anthracene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	0.82 0.96	< 0.05 < 0.05
Benzo(a)anthracene Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.92	< 0.05
Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	< 0.05
Benzo(k)fluoranthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.55	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.88	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.44	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.44	< 0.05
	mg/kg	0.03	PICENTO	7 0.00	7 0.00	0.77	\ U.UJ
Total PAH		0.0	MCEDIC	< 0.90	z 0.90	7.70	× 0.90
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	7.79	< 0.80

Lab Sample Number				1613203	1613204	1613205	1613206
Sample Reference				TP119	TP120	TP121	TP123
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.10	0.40	0.10
Date Sampled				02/09/2020	02/09/2020	02/09/2020	02/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.9	8.4	6.9	7.9
Barium (aqua regia extractable)	mg/kg	1	MCERTS	46	-	-	59
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.51	-	-	0.62
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.3	< 0.2	0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	20	24	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	14	19	20	18
Lead (aqua regia extractable)	mg/kg	1	MCERTS	85	120	20	430
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	11	12	17	11
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	29	-	-	29
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	58	75	38	74
Petroleum Hydrocarbons							
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	9.7	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0	48	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	< 10	60	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number				1613207	1613208	1613209
Sample Reference				TP125	WS107	TP130
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.10	0.10
Date Sampled				02/09/2020	02/09/2020	02/09/2020
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
	_	-		14	18	14
Moisture Content Tetal mass of sample reseived	%	N/A 0.001	NONE NONE		0.3	0.3
Total mass of sample received	kg	0.001	NONE	0.3	0.5	0.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
General Inorganics	./	4				
pH - Automated	pH Units	N/A	MCERTS	-	6.7	-
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	-	390	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	29	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.014	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	14.3	-
Sulphide	mg/kg	1	MCERTS	-	20	-
Total Sulphur	mg/kg	50	MCERTS	-	330	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	2.8	-
Total Phenols						
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80

Lab Sample Number				1613207	1613208	1613209
Sample Reference				TP125	WS107	TP130
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.10	0.10
Date Sampled				02/09/2020	02/09/2020	02/09/2020
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.5	7.7	8.8
Barium (aqua regia extractable)	mg/kg	1	MCERTS	49	-	56
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.48	-	0.59
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	-	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	18	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	18	14	19
Lead (aqua regia extractable)	mg/kg	1	MCERTS	99	100	100
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	12	9	13
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	29	-	27
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	74	72	81
Petroleum Hydrocarbons						
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 20-28594 Project / Site name: Well Street

Lab Sample Number				1613210	1613211	1613212
Sample Reference				TP103	TP121	TP128
Sample Number				None Supplied	None Supplied 0.40	None Supplied
Depth (m)				0.60		0.10
Date Sampled				01/09/2020	02/09/2020	02/09/2020
Time Taken				None Supplied	None Supplied	None Supplied
Time Taken		1		None Supplied	None Supplied	чопе заррпеа
		Limit of detection	Accreditation Status			
Analytical Parameter	ç	9,	lita			
(Leachate Analysis)	Units	det	tion			
		C <u>t</u>	Sta			
		ä	tus			
General Inorganics						
pH	pH Units	N/A	ISO 17025	7.1	5.8	5.9
Total Cyanide (Low Level 1 μg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
, , , , , , , , , , , , , , , , , , ,	1.0			-		
Total Phenols						
Total Phenols (monohydric)	μg/l	1	ISO 17025	< 1.0	1.4	< 1.0
	rai:				* *	
Speciated PAHs						
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Pyrene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Chrysene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/I	0.01	NONE	< 0.01	< 0.01	< 0.01
	F31 ·					
Total PAH						
Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2	< 0.2	< 0.2
Heavy Metals / Metalloids						
Arsenic (dissolved)	μg/l	1.1	ISO 17025	< 1.1	< 1.1	< 1.1
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	μg/l	0.4	ISO 17025	2.4	0.5	2.4
Copper (dissolved)	μg/l	0.7	ISO 17025	9.9	9.4	31
Lead (dissolved)	μg/l	1	ISO 17025	1.1	2.1	4.1
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	μg/l	0.3	ISO 17025	< 0.3	0.8	0.7
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	μg/l	0.4	ISO 17025	6.8	14	15
Monogramatics & Overgenates						
Monoaromatics & Oxygenates Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Toluene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
o & m-xylene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
			100 1/023	- 1.0	- 1.0	` 1.0

Environmental Science

Analytical Report Number: 20-28594 Project / Site name: Well Street

Your Order No: 14278-VW-F

Your Order No: 14278-VW-E						
Lab Sample Number				1613210	1613211	1613212
Sample Reference				TP103	TP121	TP128
Sample Number				0.60 01/09/2020	None Supplied 0.40	None Supplied
Depth (m)						0.10
Date Sampled					02/09/2020	02/09/2020
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status			
Petroleum Hydrocarbons						
TPH1 (C10 - C40)	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μд/І	10	NONE	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 20-28594 Project / Site name: Well Street

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1613195	TP104	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
1613196	TP105	None Supplied	1	Brown clay and sand with gravel.
1613197	TP107	None Supplied	0.6	Brown clay and sand with gravel.
1613198	TP108	None Supplied	0.1	Brown loam and clay with vegetation.
1613199	TP109	None Supplied	2.9	Light brown sand with gravel.
1613200	TP111	None Supplied	0.1	Brown sandy loam with gravel and vegetation.
1613201	WS104	None Supplied	0.4	Light brown clay and sand with gravel.
1613202	TP112	None Supplied	1	Brown clay and sand with gravel.
1613203	TP119	None Supplied	0.1	Light brown loam and clay with vegetation and gravel.
1613204	TP120	None Supplied	0.1	Light brown loam and clay with vegetation and gravel.
1613205	TP121	None Supplied	0.4	Light brown clay and sand with gravel.
1613206	TP123	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
1613207	TP125	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
1613208	WS107	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
1613209	TP130	None Supplied	0.1	Brown loam and clay with gravel and vegetation.

Analytical Report Number : 20-28594 Project / Site name: Well Street

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in leachate - LOW LEVEL 1 ug/l	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	w	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	W	ISO 17025
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS

Analytical Report Number: 20-28594 Project / Site name: Well Street

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements. In house method. In-house method. In-house method In-house method In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method. In-house method. In-house method based on USEPA8260 In-house method based on USEPA8260 In-house method based on USEPA8260 In-house method, TPH with carbon banding and silica gel split/cleanup. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH1 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	and Wastewater 20th Edition: Clesceri, Greenberg	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID		L076-PL	D	MCERTS
Total cyanide in leachate - 1µg/l	Determination of total cyanide by distillation followed by colorimetry.	and Wastewater 20th Edition: Clesceri, Greenberg	L080-PL	W	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Roy Walker

e:

e3p Heliport Business Centre Manchester M30 7RU

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-30713

Project / Site name: Well St Samples received on: 17/09/2020

Your job number: 14278 Samples instructed on/ 17/09/2020

Analysis started on:

Your order number: Analysis completed by: 23/09/2020

Report Issue Number: 1 Report issued on: 23/09/2020

Samples Analysed: 3 water samples

Signed: VA. Cxerwinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Cannala Normban				1622202	1622222	1622224
Lab Sample Number				1623382 WS101	1623383 WS108	1623384 WS111
Sample Reference						
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied
Date Sampled				16/09/2020	16/09/2020	16/09/2020
Time Taken		1		None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			
General Inorganics						
pH	pH Units	N/A	ISO 17025	7.5	7	7.1
Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0	U/S
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	4.78	109	857
	3.					
Total Phenols						
Total Phenols (monohydric)	μg/l	1	ISO 17025	6.2	250	U/S
/						
Heavy Metals / Metalloids						
Calcium (dissolved)	mg/l	0.012	ISO 17025	91	130	370
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	U/S
• • •						· · · · · ·
Arsenic (dissolved)	μg/l	0.15	ISO 17025	< 0.15	3.69	0.93
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	< 0.02	0.13
Chromium (dissolved)	μg/l	0.2	ISO 17025	4	5.9	15
Copper (dissolved)	μg/l	0.5	ISO 17025	< 0.5	0.7	14
Lead (dissolved)	μg/l	0.2	ISO 17025	0.6	0.3	3.9
Manganese (dissolved)	μg/l	0.05	ISO 17025	520	1500	2100
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	2.2	5.5	25
Selenium (dissolved)	μg/l	0.6	ISO 17025	0.8	1.9	3.8
Zinc (dissolved)	μg/l	0.5	ISO 17025	5.2	3.4	48
()	F 31 ·					
Monoaromatics & Oxygenates						
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	3.1
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	9
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
	P3/-		100 17 023	110	12.0	110
Petroleum Hydrocarbons TPH1 (C10 - C40)	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	3.1
TPH-CWG - Aromatic >C7 - C8	μg/I μg/I	1	ISO 17025	< 1.0	< 1.0	9
TPH-CWG - Aromatic >C8 - C10		1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C0 - C10	µg/l µg/l	10	NONE	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12		10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C10	μg/l μg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C10 - C21 TPH-CWG - Aromatic >C21 - C35	μg/l	10		< 10	< 10	< 10
IFIT-CWG - AIOIIIduc >CZ1 - C33	μg/l	10	NONE	< 10	< 10	< 10

Lab Sample Number	1623382	1623383	1623384			
Sample Reference				WS101	WS108	WS111
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied
Date Sampled				16/09/2020	16/09/2020	16/09/2020
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	12
VOCs						
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	3.1
Tetrachloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Bromodichloromethane Cis-1,3-dichloropropene	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Toluene	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	9
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
p & m-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Styrene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Tribromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
o-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	25.5

Lab Sample Number				1623382	1623383	1623384
Sample Reference				WS101	WS108	WS111
Sample Number					None Supplied	None Supplied
Depth (m)					None Supplied	None Supplied
Date Sampled					16/09/2020	16/09/2020
Time Taken				None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0

SVOCs						
Aniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Phenol	μg/l	0.05	NONE	< 0.05	58	420
2-Chlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Bis(2-chloroethyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Hexachloroethane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Nitrobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
4-Methylphenol	μg/l	0.05	NONE	2.1	600	5900
Isophorone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2-Nitrophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
4-Chloroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Dimethylphthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Dibenzofuran	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Diethyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
4-Nitroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Azobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Bromophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Carbazole	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Dibutyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05

Lab Sample Number					1623383	1623384
Sample Reference					WS108	WS111
Sample Number					None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied
Date Sampled					16/09/2020	16/09/2020
Time Taken					None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			
Anthraquinone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Chrysene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01

U/S = Unsuitable Sample I/S = Insufficient Sample

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC MS.	In-house method based on USEPA 8270	L102B-PL	W	NONE
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	w	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
BTEX and MTBE in water (Monoaromatics	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX VII ORIGIN OF TIER I GENERIC ASSESSMENT CRITERIA

CONSTITUENT	ORIGIN OF RISK ASSESSMENT VALUE					
Arsenic	2014 LQM/CIEH S4ULs					
Cadmium	2014 LQM/CIEH S4ULs					
Chromium	2014 LQM/CIEH S4ULs					
Lead	2014 LQM/CIEH S4ULs					
Mercury	2014 LQM/CIEH S4ULs - methylmercury					
Nickel	2014 LQM/CIEH S4ULs					
Selenium	2014 LQM/CIEH S4ULs					
Copper	2014 LQM/CIEH S4ULs					
Zinc	2014 LQM/CIEH S4ULs					
Cyanide - Total	2014 LQM/CIEH S4ULs					
Phenols - Total	2014 LQM/CIEH S4ULs					
Naphthalene						
Acenaphthylene						
Acenaphthene						
Fluorene						
Phenanthrene						
Anthracene						
Fluoranthene						
Pyrene						
Benzo(a)Anthracene						
Chrysene	Opposed an accompany with size (OAO) developed by OFU/OAA Ovitable A					
Benzo(b/k)Fluoranthene (iii)	General assessment criteria (GAC) developed by CIEH/LQM Suitable 4 Use Levels with supporting data from SR3, SR7 and existing Tox report					
Benzo(a)Pyrene	where applicable. 1% SOM.					
Indeno(123-cd)Pyrene						
Dibenzo(a,h)Anthracene						
Benzo(ghi)Perylene						
TPH C ₅ -C ₆ (aliphatic)						
TPH C ₆ -C ₈ (aliphatic)						
TPH C ₈ -C ₁₀ (aliphatic)						
TPH C ₁₀ -C ₁₂ (aliphatic)						
TPH C ₁₂ -C ₁₆ (aromatic)						
TPH C ₁₆ -C ₂₁ (aromatic)						
TPH C ₂₁ -C ₃₅ (aromatic)						

APPENDIX VIII GEOTECHNICAL TESTING RESULTS

LABORATORY REPORT

4043

Contract Number: PSL20/4666

Report Date: 18 September 2020

Client's Reference: 14-278

Client Name: E3P

Taylor Road Urmston Manchester M41 7JQ

For the attention of: Veronique Wilkinson

Contract Title: Well Street, Buckley

Date Received: 7/9/2020 Date Commenced: 7/9/2020 Date Completed: 18/9/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins R Berriman (Director) (Director) (Quality Manager)

8

S Royle S Eyre L Knight (Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

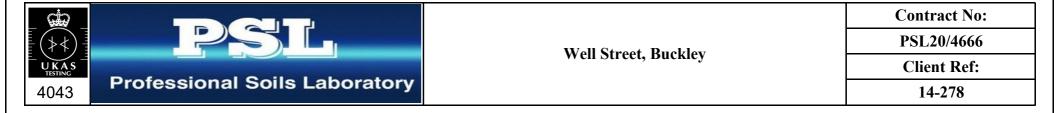
e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

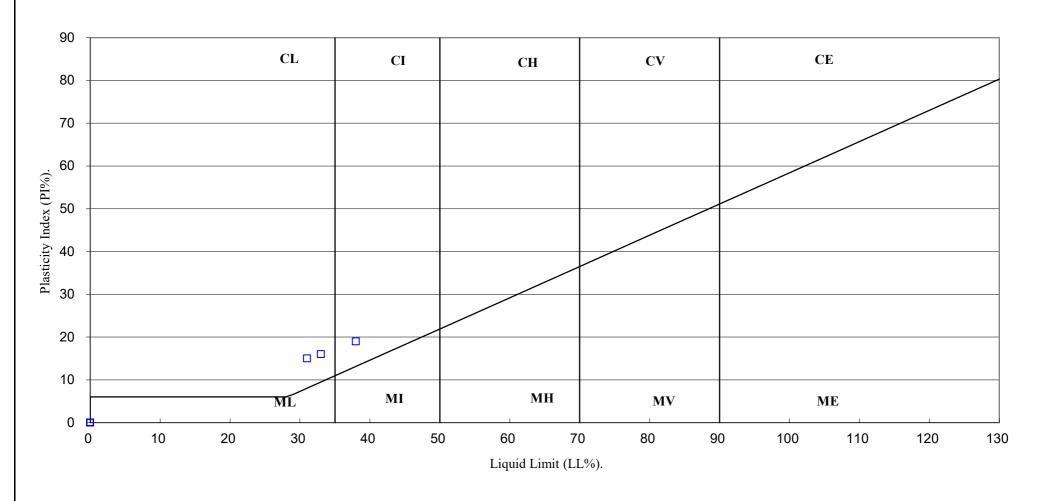
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS102		U	1.50	2.00	Stiff brown slightly gravelly sandy CLAY.
WS107		D	1.00		Brown slightly gravelly sandy CLAY.
WS112		D	2.00		Brown slightly gravelly sandy CLAY.
TP107		В	1.50		Brown gravelly very sandy CLAY.
WS104		D	2.00		Brown slightly gravelly sandy CLAY.

Well Street, Buckley

Contract No:
PSL20/4666
Client Ref:
14-278


SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)


Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm	Remarks
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS107		D	1.00		15			31	16	15	94	Low plasticity CL.
WS112		D	2.00		13			38	19	19	88	Intermediate plasticity CI.
WS104		D	2.00		12			33	17	16	90	Low plasticity CL.

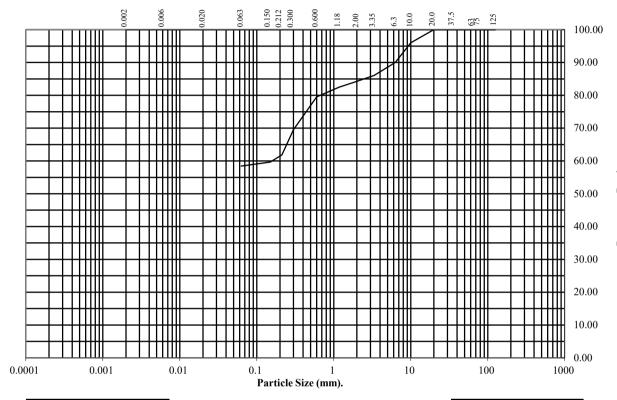
SYMBOLS: NP: Non Plastic

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Well Street, Buckley

Contract No:
PSL20/4666
Client Ref:
14-278


PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: TP107 Top Depth (m): 1.50

Sample Number: Base Depth(m):

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	96
6.3	90
3.35	86
2	84
1.18	82
0.6	80
0.3	70
0.212	62
0.15	60
0.063	58

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 16 26 58

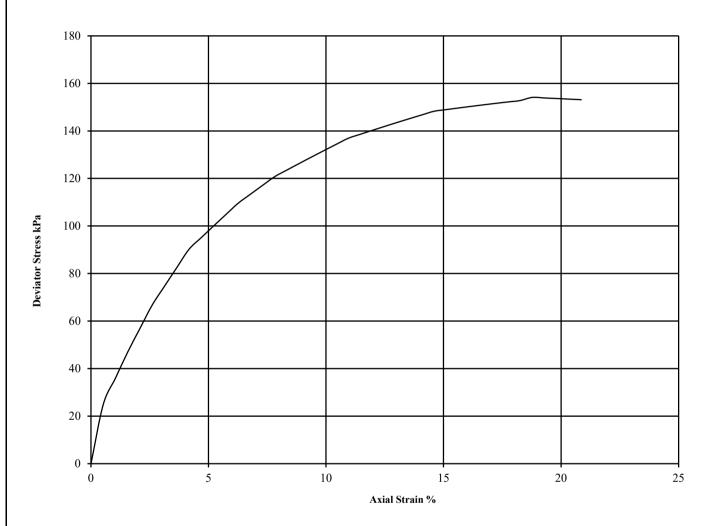
Remarks:

See Summary of Soil Descriptions

Well Street, Buckley

Contract No:
PSL20/4666
Client Ref:
14-278

UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION


WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

Hole Number: WS102 Top Depth (m): 1.50

Sample Number: Base Depth (m): 2.00

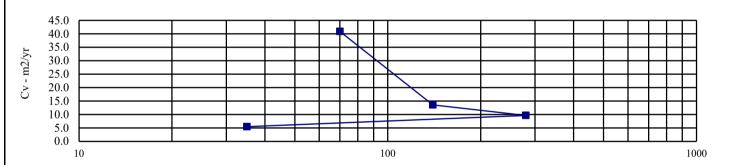
Sample Type U

Diamete	er (mm):	73	Height	(mm):	140	Test:	UU Single Stage		Remarks:
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Undisturbed Sample
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample taken from top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 2 %/min
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thick,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.45
1	15	2.15	1.87	35	154	77	18.8	Plastic	See summary of soil descriptions

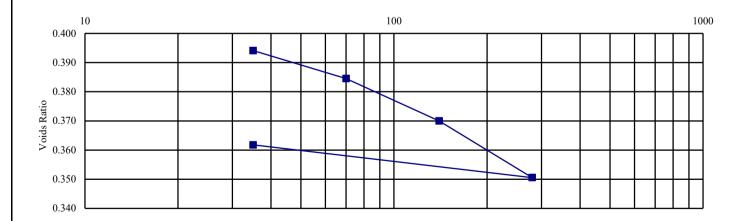
Well Street, Buckley

Contract No:
PSL20/4666
Client Ref:
14-278

ONE DIMENSIONAL CONSOLIDATION TEST


BS 1377: Part 5: 1990: Clause 3

Hole Number: WS102 Top Depth (m): 1.50

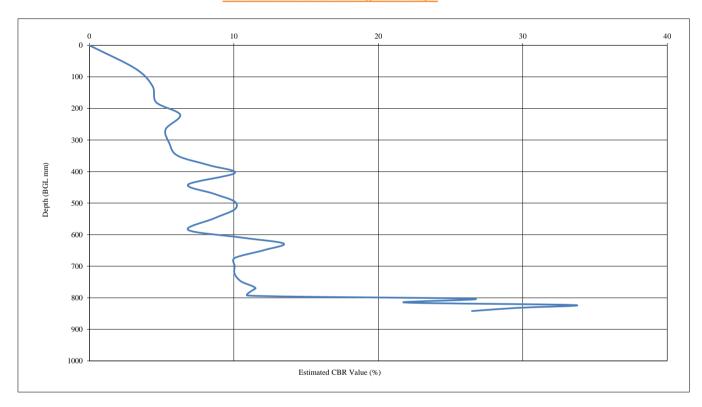

Sample Number: Base Depth (m): 2.00

Sample Type: U

Initial Conditions	nitial Conditions			Mv	Cv	Specimen location		
Moisture Content (%):	15	kPa		m2/MN	m2/yr	within tube: To		
Bulk Density (Mg/m3):	2.18	0 35		Swelling	Swelling	Method used to		
Dry Density (Mg/m3):	1.89	35	35 70 0.197		40.888	determine CV: T9		
Voids Ratio:	0.402	2 70 140 0.150 13.570 Nominal to		Nominal temperature				
Degree of saturation:	100.2	140	280	0.101	9.634	during test 'C: 20		
Height (mm):	19.852	280	35	0.034	5.465	Remarks:		
Diameter (mm)	49.868					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

Pressure -kPa

Well Street, Buckley


Contract No: PSL20/4666 Client Ref: 14-278

APPENDIX IX DYNAMIC CONE PENETROMETER TEST CERTIFICATES

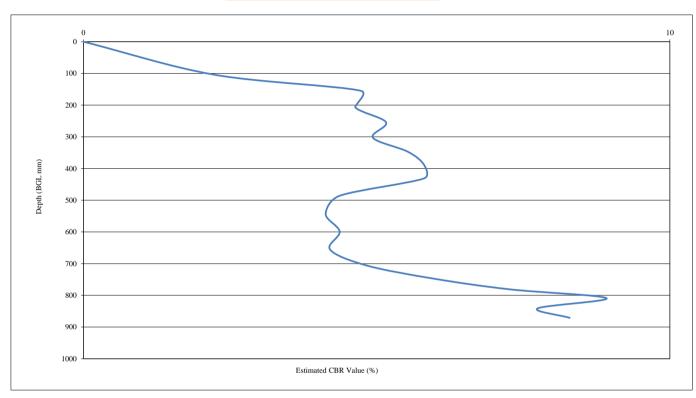
In Accordance with TRL Report PR/INT/277/04

Site Name Well Street Test Date: 16/09/2020 Site Ref 14-278 Test Location: Buckley Easting: Test No.: DCP101 0 Initial Depth (mm BGL): Northing: 0 0 Final Depth (mm BGL): 842

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	220	4	4	55.00	4.37
220	793	24	20	28.65	8.71
793	842	29	5	9.80	27.06

Comments		

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020


In Accordance with TRL Report PR/INT/277/04

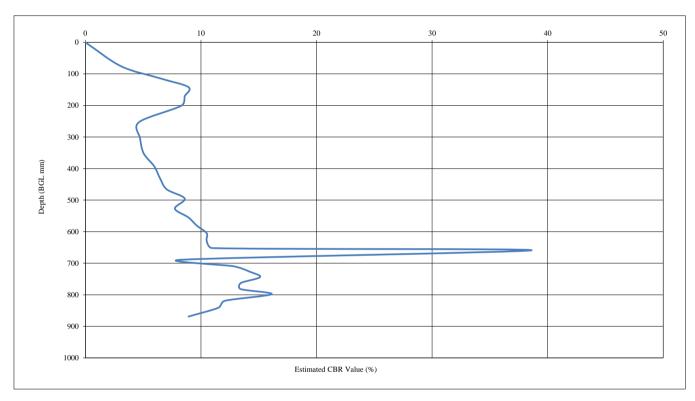
Site Name Well Street Site Ref 14-278 Test No.: DCP102 Initial Depth (mm BGL): 0 Final Depth (mm BGL): 871

Test Date: 16/09/2020 Test Location: Easting: Northing:

Buckley 0 0

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	155	2	2	77.50	3.04
155	431	8	6	46.00	5.28
431	656	12	4	56.25	4.27
655	871	18	6	36.00	6.84


Comments

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020

In Accordance with TRL Report PR/INT/277/04

Site Name Well Street Test Date: 16/09/2020 Site Ref 14-278 Test Location: Buckley Easting: Test No.: DCP103 0 Initial Depth (mm BGL): Northing: 0 62 Final Depth (mm BGL): 869

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	201	5	5	40.20	6.09
201	652	18	13	34.69	7.11
652	869	29	11	19.73	12.92

Comments			

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020

In Accordance with TRL Report PR/INT/277/04

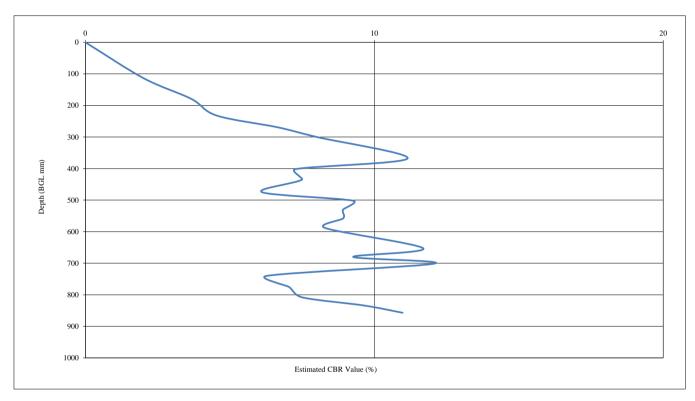
 Site Name
 Well Street

 Site Ref
 14-278

 Test No.:
 DCP104

 Initial Depth (mm BGL):
 0

 Final Depth (mm BGL):
 857


Test Date:
Test Location:
Easting:
Northing:

16/09/2020

Buckley

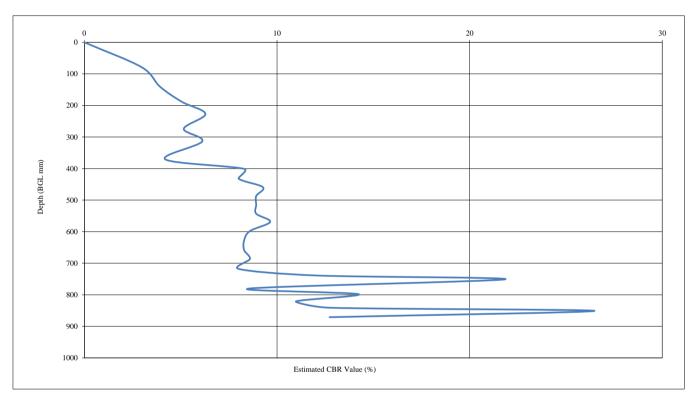
0

0

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	368	8	8	46.00	5.28
368	740	21	13	28.62	8.72
740	857	25	4	29.25	8.52

Comments			

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020



In Accordance with TRL Report PR/INT/277/04

Site Name Well Street
Site Ref 14-278
Test No.: DCP105
Initial Depth (mm BGL): 0
Final Depth (mm BGL): 871

Test Date: Test Location: Easting: Northing: 16/09/2020 Buckley 0 0

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	371	7	7	53.00	4.54
371	718	19	12	28.92	8.62
718	871	27	8	19.13	13.35

Comments

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020

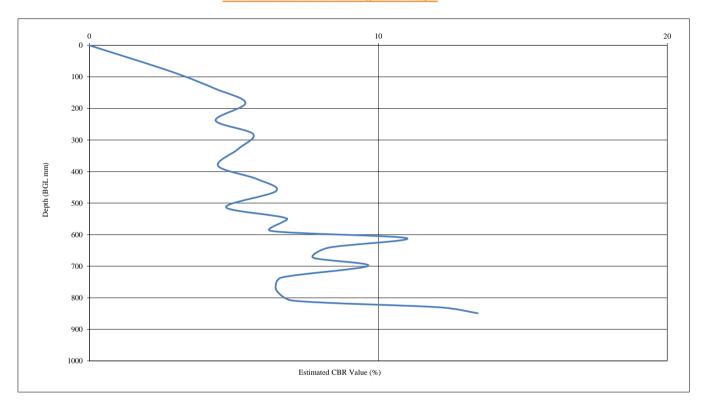
In Accordance with TRL Report PR/INT/277/04

16/09/2020

Buckley

0

0


 Site Name
 Well Street
 Test Date:

 Site Ref
 14-278
 Test Location:

 Test No.:
 DCP106
 Easting:

 Initial Depth (mm BGL):
 0
 Northing:

 Final Depth (mm BGL):
 849

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	183	3	3	61.00	3.92
183	588	12	9	45.00	5.40
588	849	21	9	29.00	8.59

Comments	Comments						

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020

16/09/2020


Buckley

0

0

In Accordance with TRL Report PR/INT/277/04

Site Name Well Street Test Date:
Site Ref 14-278 Test Location:
Test No.: DCP107 Easting:
Initial Depth (mm BGL): 0 Northing:
Final Depth (mm BGL): 844

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	234	4	4	58.50	4.09
234	800	19	15	37.73	6.51
800	844	21	2	22.00	11.51

Comments		

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020

In Accordance with TRL Report PR/INT/277/04

 Site Name
 Well Street

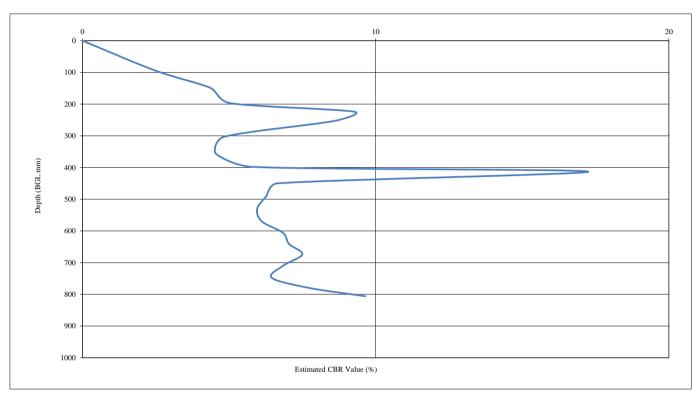
 Site Ref
 14-278

 Test No.:
 DCP108

 Initial Depth (mm BGL):
 0

 Final Depth (mm BGL):
 806

Test Date:
Test Location:
Easting:
Northing:


16/09/2020

Buckley

0

0

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	197	3	3	65.67	3.62
197	450	10	7	36.14	6.81
450	806	20	10	35.60	6.92

Comments

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020

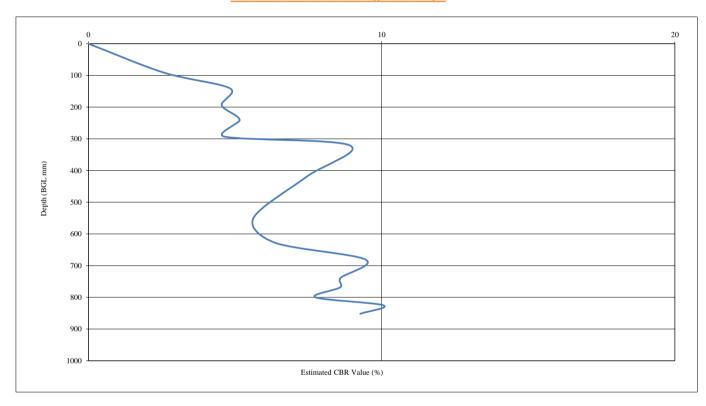
Test Date:

Easting:

Northing:

Test Location:

16/09/2020


Buckley

0

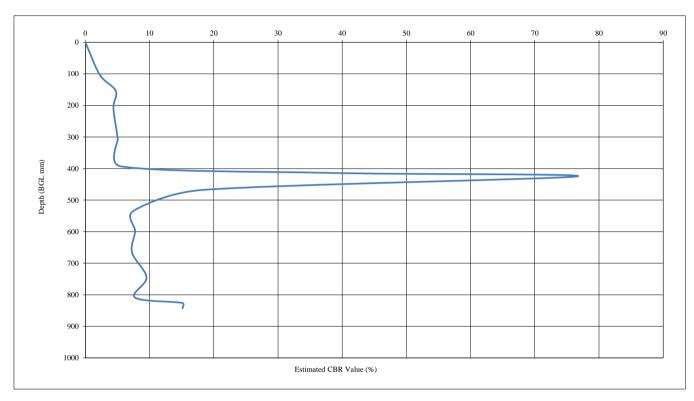
0

In Accordance with TRL Report PR/INT/277/04

Site Name Well Street
Site Ref 14-278
Test No.: DCP109
Initial Depth (mm BGL): 0
Final Depth (mm BGL): 852

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	293	5	5	58.60	4.09
293	681	16	11	35.27	6.99
556	852	22	6	49.33	4.90

Comments		

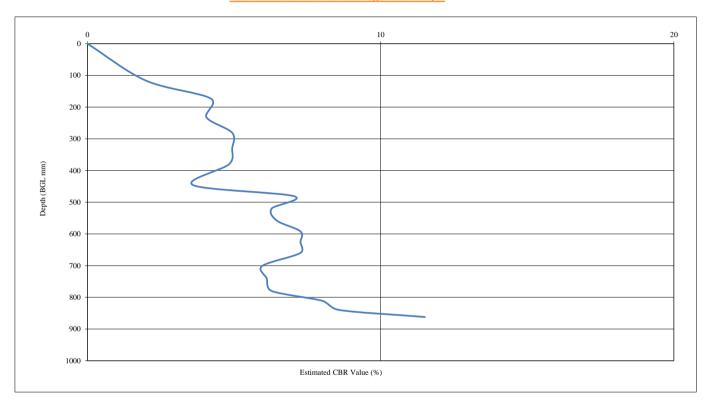

I	Site Engineer:	Checked By:	Date:	Approved By:	Date:
	RW	vw	26/09/2020	RJW	01/10/2020

In Accordance with TRL Report PR/INT/277/04

Site Name Well Street
Site Ref 14-278
Test No.: DCP110
Initial Depth (mm BGL): 0
Final Depth (mm BGL): 843

Test Date: Test Location: Easting: Northing: 16/09/2020 Buckley 0 0

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	209	3	3	69.67	3.40
209	393	7	4	46.00	5.28
393	534	18	11	12.82	20.37
534	843	29	11	28.09	8.89


Comments

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020

In Accordance with TRL Report PR/INT/277/04

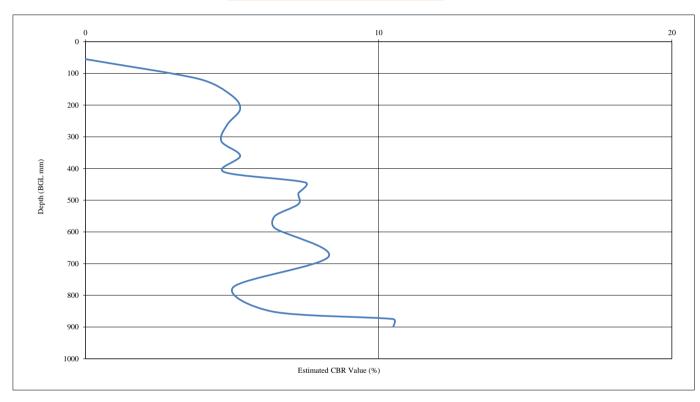
Site Name Well Street Test Date: 16/09/2020 Site Ref 14-278 Test Location: Buckley Easting: Test No.: DCP111 0 Northing: Initial Depth (mm BGL): 0 0 Final Depth (mm BGL): 862

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	173	2	2	86.50	2.71
173	446	7	5	54.60	4.40
446	660	13	6	35.67	6.91
660	862	19	6	33.67	7.34

Comments		

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020

In Accordance with TRL Report PR/INT/277/04


Site Name Well Street Site Ref 14-278 Test No.: DCP112 Initial Depth (mm BGL): 0 Final Depth (mm BGL): 899

Test Date: 16/09/2020 **Test Location:** Buckley Easting: Northing:

0

0

Estimated California Bearing Ratio Graph

Start Depth (mm) BGL	Finish Depth (mm) BGL	No. of Blows	Blows Per Layer	DCP mm/Blows	Ave Estimated Layer (CBR %)
0	212	3	3	70.67	3.35
212	411	7	4	49.75	4.86
411	851	19	12	36.67	6.71
851	899	21	2	24.00	10.50

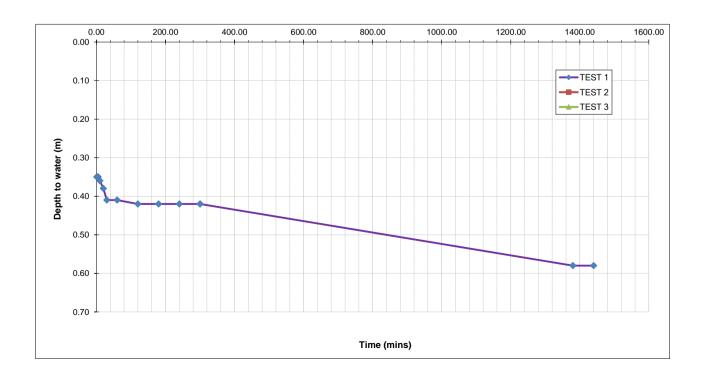
Comments

Site Engineer:	Checked By:	Date:	Approved By:	Date:
RW	vw	26/09/2020	RJW	01/10/2020

APPENDIX X BRE365 SOAKAWAY PERMEABILITY TEST CERTIFICATES

Site: Well Street Job Number: 14-278 Date of Test: 01/09/2020
 Trial Pit Number:
 SA101

 Length:
 2.20
 m


 Width:
 0.70
 m

 Depth:
 2.00
 m

 Groundwater Level:
 N/A
 m

			1			
		TEST 1		EST 2		TEST 3
Test did not fall below 25% or 75% effective storage depths. As such the stratum is not considered to have significant permeability coefficient to support sustainable drainage strategies.	Time(min) 1.00 2.00 3.00 4.00 5.00 10.00 20.00 30.00 60.00 120.00 180.00 240.00 300.00 1380.00 1440.00	Depth to Water (m) 0.35 0.35 0.35 0.35 0.35 0.36 0.38 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.58 0.58		Depth to Water (m)	Time(min)	Depth to Water (m)
Effective Storage Depth m 75% Effective Storage Depth m (i.e. depth below GL) m 25% Effective Storage Depth m (i.e. depth below GL) m (i.e. depth below GL) m Effective Storage Depth 75%-25% m Time to fall to 75% effective depth mins 7 mins 1 mins		1.65 1.24 0.76 0.41 1.59 0.83 N/A N/A 1.27 6.33 N/A				
SOIL INFILTRATION RATE m/s		N/A				

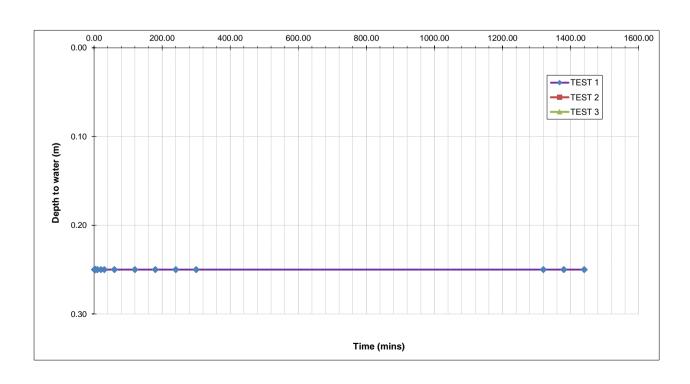
DESIGN SOIL INFILTRATION RATE, f N/A

Site: Well Street
Job Number: 14-278
Date of Test: 01/09/2020

 Trial Pit Number:
 SA102

 Length:
 2.00
 m

 Width:
 0.70
 m


 Depth:
 2.00
 m

 Groundwater Level:
 N/A
 m

		TEST 1	TEST 2		TEST 3
Test did not fall below 25% or 75% effectiv storage depths. As such the stratum is not considered to have significant permeability coefficient to support sustainable drainage strategies.	1.00			Water (m) Time(min)	Depth to Water (m)
	10.00 20.00 30.00 60.00 120.00 180.00 240.00 300.00 1320.00 1440.00	0.25 0.25 0.25 0.25 0.25			
75% Effective Storage Depth (i.e. depth below GL) 25% Effective Storage Depth (i.e. depth below GL) Effective Storage Depth 75%-25% Time to fall to 75% effective depth	m m m m m m m	1.75 1.31 0.69 0.44 1.56 0.88 N/A N/A			
V (75%-25%) na (50%) n	n3 n2 ins	1.23 6.13 N/A			
SOIL INFILTRATION RATE n	n/s	N/A			

DESIGN SOIL INFILTRATION RATE, f

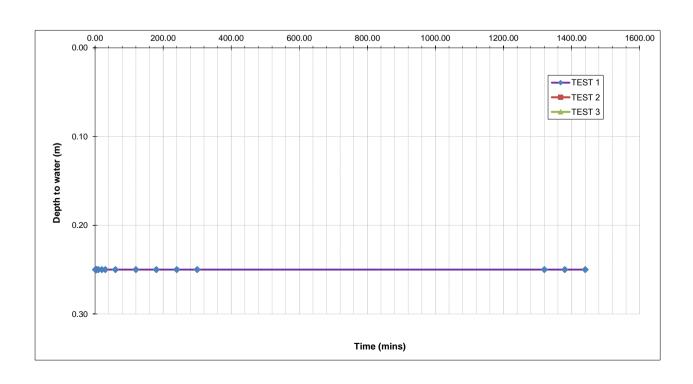
N/A

Site: Well Street
Job Number: 14-278
Date of Test: 01/09/2020

 Trial Pit Number:
 SA103

 Length:
 1.80
 m

 Width:
 0.70
 m


 Depth:
 1.60
 m

 Groundwater Level:
 N/A
 m

Test did not fall below 25% or 75% effective storage depths. As such the stratum is not considered to have significant permeability coefficient to support sustainable drainage strategies.	Time(min) 1.00 2.00 3.00 4.00 5.00 10.00	TEST 1 Depth to Water (m) 0.25 0.25 0.25 0.25 0.25 0.25	Time(min)	TEST 2 Depth to Water (m)	Time(min)	TEST 3 Depth to Water (m)
storage depths. As such the stratum is not considered to have significant permeability coefficient to support sustainable drainage	1.00 2.00 3.00 4.00 5.00	0.25 0.25 0.25 0.25	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)
considered to have significant permeability coefficient to support sustainable drainage	2.00 3.00 4.00 5.00	0.25 0.25 0.25				
coefficient to support sustainable drainage	2.00 3.00 4.00 5.00	0.25 0.25 0.25				
	3.00 4.00 5.00	0.25 0.25				
strategies.	4.00 5.00	0.25				
	5.00				1	
	5.00					
		0.25				
	20.00	0.25				
	30.00	0.25				
	60.00	0.25				
	120.00	0.25				
	180.00	0.25				
	240.00	0.25				
	300.00	0.25				
	1320.00					
		0.25				
	1380.00	0.25				
	1440.00	0.25				
Effective Storage Depth m		1.35				
75% Effective Storage Depth m		1.01				
(i.e. depth below GL) m		0.59				
25% Effective Storage Depth m		0.34				
(i.e. depth below GL) m		1.26				
Effective Storage Depth 75%-25% m		0.68				
Time to fall to 75% effective depth mins		N/A				
Time to fall to 25% effective depth mins		N/A				
V (75%-25%) m3		0.85				
a (50%) m2		4.64				
t (75%-25%) mins		N/A				
SOIL INFILTRATION RATE m/s		N/A				

DESIGN SOIL INFILTRATION RATE, f

N/A

 Site:
 Well Street

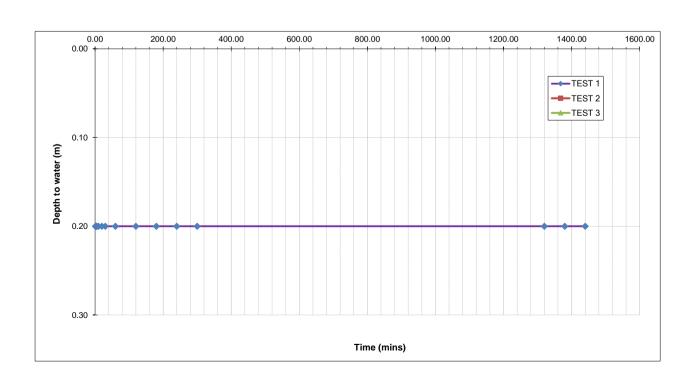
 Job Number:
 14-278

 Date of Test:
 01/09/2020

 Trial Pit Number:
 SA104

 Length:
 1.90
 m

 Width:
 0.70
 m


 Depth:
 1.80
 m

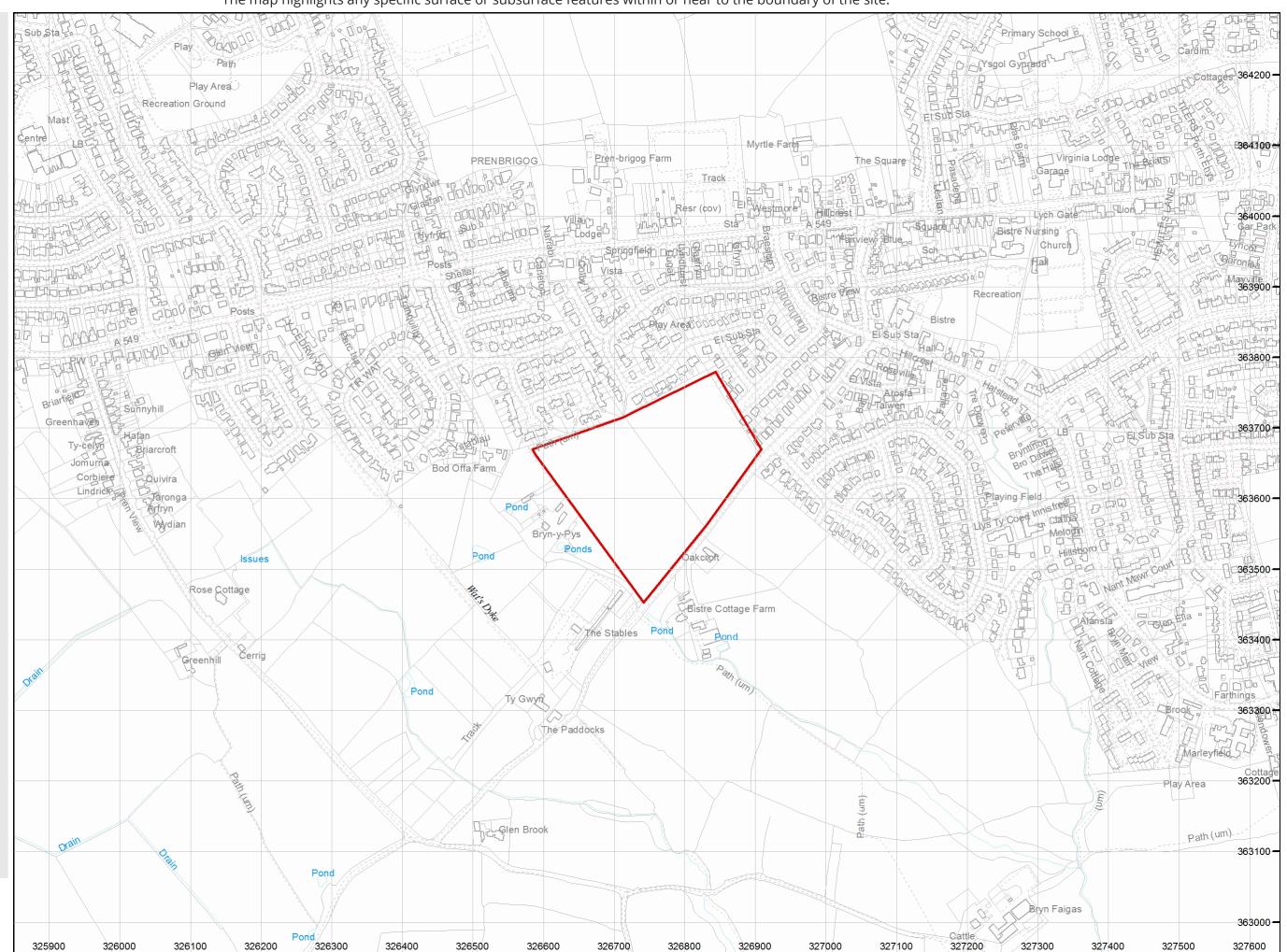
 Groundwater Level:
 N/A
 m

			1		1	
		TEST 1		TEST 2		TEST 3
Test did not fall below 25% or 75% effective	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)
storage depths. As such the stratum is not						
considered to have significant permeability	1.00	0.20				
coefficient to support sustainable drainage	2.00	0.20				
strategies.	3.00	0.2				
	4.00	0.2				
	5.00	0.2				
	10.00	0.2				
	20.00	0.2				
	30.00	0.2				
	60.00	0.2				
	120.00	0.2				
	180.00	0.2				
	240.00	0.20				
	300.00	0.2				
	1320.00	0.2				
	1380.00	0.20				
	1440.00	0.20				
Effective Storage Depth m		1.60				
75% Effective Storage Depth m		1.20				
(i.e. depth below GL) m		0.60				
25% Effective Storage Depth m		0.40				
(i.e. depth below GL) m		1.40				
Effective Storage Depth 75%-25% m		0.80				
Time to fall to 75% effective depth mins		N/A				
Time to fall to 25% effective depth mins		N/A				
· ·						
V (75%-25%) m3		1.06				
a (50%) m2		5.49				
t (75%-25%) mins		N/A				
SOIL INFILTRATION RATE m/s		N/A				

DESIGN SOIL INFILTRATION RATE, f

N/A

APPENDIX XI COAL AUTHORITY REPORT AND MINE ABANDONMENT PLANS



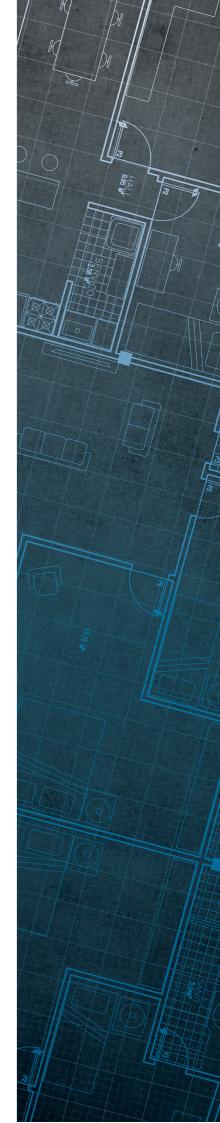
Summary of findings

The map highlights any specific surface or subsurface features within or near to the boundary of the site.

Approximate position of the enquiry boundary shown

How to contact us

0345 762 6848 (UK) +44 (0)1623 637 000 (International) www.groundstability.com



Consultants Coal Mining Report

Land Fronting Well Street Buckley Flintshire CH7 2PQ

Date of enquiry: 7 August 2020
Date enquiry received: 7 August 2020
Issue date: 7 August 2020

Our reference: 51002294140001 Your reference: 14-278/B/RJW

Consultants Coal Mining Report

This report is based on and limited to the records held by the Coal Authority at the time the report was produced.

Client name

E3P

Enquiry address

Land Fronting Well Street Buckley Flintshire CH7 2PQ

How to contact us

0345 762 6848 (UK) +44 (0)1623 637 000 (International)

200 Lichfield Lane Mansfield Nottinghamshire NG18 4RG

www.groundstability.com

Approximate position of property

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2018. All rights reserved.

Ordnance Survey Licence number: 100020315

Section 1 - Mining activity and geology

Past underground mining

No past mining recorded.

Probable unrecorded shallow workings

None.

Spine roadways at shallow depth

No spine roadway recorded at shallow depth.

Mine entries

None recorded within 100 metres of the enquiry boundary.

Abandoned mine plan catalogue numbers

None available.

Outcrops

No outcrops recorded.

Geological faults, fissures and breaklines

No faults, fissures or breaklines recorded.

Opencast mines

None recorded within 500 metres of the enquiry boundary.

Coal Authority managed tips

None recorded within 500 metres of the enquiry boundary.

Section 2 - Investigative or remedial activity

Please refer to the 'Summary of findings' map (on separate sheet) for details of any activity within the area of the site boundary.

Site investigations

None recorded within 50 metres of the enquiry boundary.

Remediated sites

None recorded within 50 metres of the enquiry boundary.

Coal mining subsidence

The Coal Authority has not received a damage notice or claim for the subject property, or any property within 50 metres of the enquiry boundary, since 31 October 1994.

There is no current Stop Notice delaying the start of remedial works or repairs to the property.

The Coal Authority is not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991.

Mine gas

None recorded within 500 metres of the enquiry boundary.

Mine water treatment schemes

None recorded within 500 metres of the enquiry boundary.

Section 3 - Licensing and future mining activity

Future underground mining

None recorded.

Coal mining licensing

None recorded within 200 metres of the enquiry boundary.

Court orders

None recorded.

Section 46 notices

No notices have been given, under section 46 of the Coal Mining Subsidence Act 1991, stating that the land is at risk of subsidence.

Withdrawal of support notices

The property is not in an area where a notice to withdraw support has been given.

The property is not in an area where a notice has been given under section 41 of the Coal Industry Act 1994, cancelling the entitlement to withdraw support.

Payments to owners of former copyhold land

The property is not in an area where a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994.

Section 4 - Further information

Based on the responses in this report, no further information has been highlighted.	

Section 5 - Data definitions

The datasets used in this report have limitations and assumptions within their results. For more guidance on the data and the results specific to the enquiry boundary, please **call us on 0345 762 6848** or **email us at groundstability@coal.gov.uk**.

Past underground coal mining

Details of all recorded underground mining relative to the enquiry boundary. Only past underground workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination, will be included.

Probable unrecorded shallow workings

Areas where the Coal Authority believes there to be unrecorded coal workings that exist at or close to the surface (less than 30 metres deep).

Spine roadways at shallow depth

Connecting roadways either, working to working, or, surface to working, both in-seam and cross measures that exist at or close to the surface (less than 30 metres deep), either within or within 10 metres of the enquiry boundary.

Mine entries

Details of any shaft or adit either within, or within 100 metres of the enquiry boundary including approximate location, brief treatment details where known, the mineral worked from the mine entry and conveyance details where the mine entry has previously been sold by the Authority or its predecessors British Coal or the National Coal Board.

Abandoned mine plan catalogue numbers

Plan numbers extracted from the abandoned mines catalogue containing details of coal and other mineral abandonment plans deposited via the Mines Inspectorate in accordance with the Coal Mines Regulation Act and Metalliferous Mines Regulation Act 1872. A maximum of 9 plan extents that intersect with the enquiry boundary will be included. This does not infer that the workings and/or mine entries shown on the abandonment plan will be relevant to the site/property boundary.

Outcrops

Details of seam outcrops will be included where the enquiry boundary intersects with a conjectured or actual seam outcrop location (derived by either the British Geological Survey or the Coal Authority) or intersects with a defined 50 metres buffer on the coal (dip) side of the outcrop. An indication of whether the Coal Authority believes the seam to be of sufficient thickness and/or quality to have been worked will also be included.

Geological faults, fissures and breaklines

Geological disturbances or fractures in the bedrock. Surface fault lines (British Geological Survey derived data) and fissures and breaklines (Coal Authority derived data) intersecting with the enquiry boundary will be included. In some circumstances faults, fissures or breaklines have been known to contribute to surface subsidence damage as a consequence of underground coal mining.

Opencast mines

Opencast coal sites from which coal has been removed in the past by opencast (surface) methods and where the enquiry boundary is within 500 metres of either the licence area, site boundary, excavation area (high wall) or coaling area.

Coal Authority managed tips

Locations of disused colliery tip sites owned and managed by the Coal Authority, located within 500 metres of the enquiry boundary.

Site investigations

Details of site investigations within 50 metres of the enquiry boundary where the Coal Authority has received information relating to coal mining risk investigation and/or remediation by third parties.

Remediated sites

Sites where the Coal Authority has undertaken remedial works either within or within 50 metres of the enquiry boundary following report of a hazard relating to coal mining under the Coal Authority's Emergency Surface Hazard Call Out procedures.

Coal mining subsidence

Details of alleged coal mining subsidence claims made since 31 October 1994 either within or within 50 metres of the enquiry boundary. Where the claim relates to the enquiry boundary confirmation of whether the claim was accepted, rejected or whether liability is still being determined will be given. Where the claim has been discharged, whether this was by repair, payment of compensation or a combination of both, the value of the claim, where known, will also be given.

Details of any current 'Stop Notice' deferring remedial works or repairs affecting the property/site, and if so the date of the notice.

Details of any request made to execute preventative works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991. If yes, whether any person withheld consent or failed to comply with any request to execute preventative works.

Mine gas

Reports of alleged mine gas emissions received by the Coal Authority, either within or within 500 metres of the enquiry boundary that subsequently required investigation and action by the Coal Authority to mitigate the effects of the mine gas emission.

Mine water treatment schemes

Locations where the Coal Authority has constructed or operates assets that remove pollutants from mine water prior to the treated mine water being discharged into the receiving water body.

These schemes are part of the UK's strategy to meet the requirements of the Water Framework Directive. Schemes fall into 2 basic categories: Remedial – mitigating the impact of existing pollution or Preventative – preventing a future pollution incident.

Mine water treatment schemes generally consist of one or more primary settlement lagoons and one or more reed beds for secondary treatment. A small number are more specialised process treatment plants.

Future underground mining

Details of all planned underground mining relative to the enquiry boundary. Only those future workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination will be included.

Coal mining licensing

Details of all licenses issued by the Coal Authority either within or within 200 metres of the enquiry boundary in relation to the under taking of surface coal mining, underground coal mining or underground coal gasification.

Court orders

Orders in respect of the working of coal under the Mines (Working Facilities and Support) Acts of 1923 and 1966 or any statutory modification or amendment thereof.

Section 46 notices

Notice of proposals relating to underground coal mining operations that have been given under section 46 of the Coal Mining Subsidence Act 1991.

Withdrawal of support notices

Published notices of entitlement to withdraw support and the date of the notice. Details of any revocation notice withdrawing the entitlement to withdraw support given under Section 41 of the Coal Industry Act 1994.

Payment to owners of former copyhold land

Relevant notices which may affect the property and any subsequent notice of retained interests in coal and coal mines, acceptance or rejection notices and whether any compensation has been paid to a claimant.

