

chartered consulting engineers

Our ref: 7956_FCA

Flood Consequences Assessment and Drainage Strategy

for

Land off Mold Road

Gwersyllt, Wrexham

For : Castle Green Homes Ltd Unit 20, St Asaph Business Park St Asaph Denbighshire LL17 0LJ

21 November 2022

Flood Consequences Assessment and Drainage Strategy for Land Off Mold Road, Gwersyllt, Wrexham

Document Verification

Project Title	Land Off Mold Road, Gwersyllt, Wrexham
Project Number	7956
Document Title	Flood Consequences Assessment and Drainage Strategy
Document Number	7956_FCA_Issue 3

This document is not to be used for contractual or engineering purposes unless the document verification sheet is signed where indicated by the approver of the document.

Prepared by

X A -s

A Jones

Senior Infrastructure Engineer

Checked and Approved

Peter h Syles

P R Sykes

BSc (Hons), MSc (Eng), CGeol, FGS

Document Revision

Report Reference	Date	Description	Prepared	Checked and Approved
7956_FCA _Issue 3	21/11/2022	Flood Consequences Assessment	A Jones	P R Sykes

This report has been prepared for and on behalf of our client, in accordance with the terms and conditions of the appointment agreement with Coopers. Other than where specifically allowed for in the said appointment agreement, any other party using this report for any purpose whatsoever does so at their own risk and any duty of care to that party is specifically excluded.

Flood Consequences Assessment and Drainage Strategy for Land Off Mold Road, Gwersyllt, Wrexham

Contents

Section

Page No.

1.0	Introduction	3
2.0	Site Characteristics	4
3.0	Sources of Flood Risk Information	5
4.0	Sources of Flood Risk	7
5.0	Surface Water Drainage	8
6.0	Conclusions and Recommendations	12

Figures

Figure 1	-	Site Location	4
Figure 2	-	Natural Resources Wales Flood Map for Planning (River and Sea)	5
Figure 3	-	Natural Resources Wales Surface Water Flooding Map	6
Figure 4	-	Natural Resources Wales Reservoir Flooding Map	8

List of Appendices

Appendix 1	-	Reference Drawings
Appendix 2	-	Infiltration Consideration
Appendix 3	-	Correspondence
Appendix 4	-	Calculations

1.0 Introduction

Coopers (Chester) Ltd, (Coopers) have been appointed by Castle Green Homes Ltd to assess the risk of flooding and to provide a Drainage Strategy for a site off Mold Road in Gwersyllt, Wrexham. Castle Green Homes Ltd are proposing a new housing development, comprising of approximately 90 No. dwellings.

Castle Green Homes Ltd are planning the construction of a mixture of semi-detached and detached residential properties with associated access road, parking, vehicular access and landscaping subject to conditions. It is understood the site does not currently benefit from any planning decision.

This flood consequences assessment (FCA) evaluates the proposals with regards to flood risk, identifying and appraising potential flood risk both to and from the whole site. Coopers have carried out the following:

- i. Assessment of the development potential of the site in line with the Welsh Government's Technical Advice Note 15: Development and Flood Risk (TAN15) and;
- ii. An assessment of surface water runoff and drainage strategy

Since January 7th, 2019, all new developments will require sustainable drainage for surface water if there are at least 2 No. properties or the construction area is more than 100sq.m. The surface water drainage systems must be designed and built to meet Welsh Government standards for sustainable drainage.

These systems must be approved by the local authority acting in its SuDS Approving Body (SAB) role before construction work begins. The SAB will have a duty to adopt compliant systems.

2.0 Site Characteristics

2.1 <u>Site Location</u>

The site is a parcel of agricultural land in Gwersyllt, Wrexham. The site is situated off Mold Road at approximate grid reference SJ322525.

Figure 1 – Site Location

2.2 <u>Site Description</u>

The site covers an area of 3.13 Hectares and consists of a single agricultural field.

The topography of the site varies from a highpoint of 95.5m AOD at the western end of the site, which falls to 84.5m AOD to the east. Refer to topographical survey in Appendix 1.

3.0 Sources of Flood Risk Information

3.1 The Welsh Government Development Advice Map

The Welsh Government Development Advice Map shows the site is located within Flood Zone A – an area considered to be at little or no risk of fluvial or tidal flooding, with a less than 1 in 1000 (0.1%) annual probability of flooding in any given year.

The proposed residential development is considered to be a 'highly vulnerable' development in accordance with Figure 2 of the Welsh Governments Technical Advice Note 15. Highly vulnerable development is considered to be appropriate within Flood Zone A.

3.2 <u>Natural Resources Wales</u>

The NRW Flood Map shows the site is located within Flood Zone 1 - an area considered to have the lowest probability of fluvial flooding. It is assessed as having a less than 0.1% annual probability of flooding in any given year.

It should be noted that the Flood Map only covers flooding from rivers and the sea. Flooding can occur at any time and in any place from sources such as rising groundwater levels, burst water mains, blocked road drains, run-off from hillsides, sewer overflows, etc.

Figure 2 - Natural Resources Wales Flood Map for Planning (River and Sea)

The Natural Resources Wales long term flood risk map indicates the site has a low risk of flooding from Surface Water. There is a depression of approximately 0.5m deep located towards the eastern end of site which is currently shown to be at risk of surface water flooding. This is only taking flows from within the site and will be mitigated by regrading of the site. Post development there will be no surface water flood risk within the site and no increased flood risk outside the site boundary.

Figure 3 – Natural Resources Wales Surface Water Flooding Map

3.3 <u>Wrexham LLFA</u>

The Wrexham County Borough Council Local Flood Risk Management Strategy (June 2014) contains no records of any flooding at or near to the site. WCBC have confirmed they have no information of any known historical flooding within the vicinity of the site. Refer to Appendix 3 correspondence.

4.0 Sources of Flood Risk

4.1 <u>Fluvial</u>

Extreme fluvial flood events have the potential to cause rapid inundation of the site whilst posing a threat to welfare and users. As outlined in Section 3.2; the site is within Flood Zone 1 and is therefore not at risk from extreme fluvial or tidal flooding. Therefore, the risk from extreme fluvial flooding to the site is considered to be low.

4.2 <u>Infrastructure Failure (Existing and Proposed)</u> The failure of infrastructure such as culverts or bridges could increase the risk of flooding at the site. The risk of flooding is considered as very low.

4.3 <u>Overland Flow</u>

Overland flow occurs when the infiltration capacity of the ground is exceeded in a storm event. This can result in water travelling as a sheet flow overland or excess water being conveyed from location to another via local road networks. Due to the topography of the site sloping to the southern end of the site and the road layout / proposed public open space, overland flow is not considered a significant risk. Overland flows from the site will be significantly reduced post development with the incorporation of positive drainage and an internal road network.

4.4 <u>Sewer Flooding</u>

If the capacity of the sewers is exceeded in an extreme event, or a blockage occurs, surcharging of the network can result in surface flooding. Welsh Water sewer plans which are included in Appendix 3, indicate that there are currently no existing adopted sewers located within the site boundary.

We have requested any information Welsh Water may have on any known flooding within the vicinity of the site and are currently waiting for a response.

The overall risk from sewer flooding is considered as low.

4.5 <u>Groundwater Flooding</u>

Groundwater flooding occurs as a result of water rising up from the underlying superficial deposits, bedrock or from springs.

There is currently no site investigation information for review at this stage so potential for groundwater flooding will need to be assessed when data is available.

At this stage the overall risk from groundwater flooding is considered as low.

4.6 <u>Coastal Flooding</u>

The site is not located in proximity of any tidal waterway or within close proximity to the sea and is therefore not at risk from tidal inundation.

4.7 <u>Reservoirs</u>

The site is not located in proximity of any reservoirs. Additionally, the NRW maps indicate the site is not at risk of flooding from reservoirs.

Flood Consequences Assessment and Drainage Strategy for Land Off Mold Road, Gwersyllt, Wrexham

Figure 4 - Natural Resources Wales Reservoir Flooding Map

5.0 Surface Water Drainage

5.1 <u>General</u>

The design for a surface water drainage system for the proposed development will be guided by the principles set out in the Welsh Government's 'Recommended non-statutory standards for sustainable drainage (SuDS) in Wales – designing, constructing, operating and maintaining surface water drainage systems' (2017)

The SuDS Standards Wales sets out the following hierarchy for surface water runoff destination:

Priority Level 1: Surface water runoff is collected for use;Priority Level 2: Surface water runoff is infiltrated to ground;Priority Level 3: Surface water runoff is discharged to a surface water body;Priority Level 4: Surface water runoff is discharged to a surface water sewer, highway drain, or another drainage system;Priority Level 5: Surface water runoff is discharged to a combined sewer.

Note that Priority Level 1 is the preferred (highest priority) and that 4 and 5 should only be used in exceptional circumstances.

5.2 Existing Surface Water Drainage

The site does not benefit from any existing drainage and will rely on infiltration and surface water runoff to dispose of surface water flows. The flows will follow topography and will fall in a easterly direction towards the watercourse located outside the site boundary.

5.3 <u>Existing Site Runoff</u>

The greenfield run-off rates for the site has been calculated using the HR Wallingford Greenfield runoff rate estimation tool. The default soil type is 2 which would indicate a freely draining permeable soil (sand / gravel). As we don't have any site investigation information at this stage, we have also run the greenfield run-off calculation for soil type 3 (mixed areas of permeable and impermeable) and soil type 4 (impermeable)

Soil Type 2 (Default)	Sand / gravel	QBAR = 5.95 l/s
Soil Type 3 (mixed)	Sand / gravel / clay	QBAR = 9.38 l/s
Soil Type 4 (impermeable)	Clay	QBAR = 15.76 l/s

Refer to Appendix 4 for calculations

5.4 <u>Proposed Surface Water Drainage and Runoff Rates</u>

Priority Level 1

Whilst rainwater harvesting has been considered for the proposed development it should be noted that any device enabling water re-use cannot be taken into account when sizing attenuation as the storage facility may be full when a storm event occurs. Therefore, an overflow to an infiltration device (where ground conditions allow) or to a watercourse / sewer will be required.

Castle Green Homes Ltd are not proposing to incorporate rainwater harvesting within the development; however, they are proposing to install a water butt to each dwelling which will allow for water collection for garden re-use.

Priority Level 2

There is currently no site investigation available for review. However local geology mapping and knowledge of nearby sites indicates that there is potential for infiltration techniques to dispose of surface water flows from the development. We understand the St Giles Park development to the north of the site has some plots of the western half draining to private soakaways with the remainder of the development draining to the watercourse along the eastern boundary alongside the railway.

BGS borehole information available for the surrounding area shows a mix of till / sands and gravels.

Infiltration tests will need to be undertaken to determine potential for priority level 2 techniques. It should be noted that whilst slow rates may not be good enough to drain the site during a 100-year storm event they will potentially provide for slow infiltration SuDS components to deal with low flow events and provide for 5mm interception. Permeable paving (partial infiltration) and bioretention components such as tree pits and rain gardens can be considered appropriate.

Refer to Appendix 2 for infiltration consideration information.

Priority Level 3

The nearest main river is the River Alyn approximately 1.2km to the north east of the site.

There is an ordinary watercourse flowing in a southeast direction along the eastern site boundary. This runs to the west of the railway and consists of infiltration basins, open watercourses / culverts and serves the 2 developments to the north developed by Morris Homes (St Giles Park) and Redrow Homes (Hardwick Drive). The development site drains towards this watercourse via overland flows as levels on the western end of the site are at 95.5m AOD falling to 84.5m AOD to the east. The greenfield flow rate and volume of surface water currently being passed forward to this watercourse will depend on the soil type and its permeability characteristics.

There is also a watercourse flowing southeast along the southern boundary of the development site. This takes from highway drainage from Old Mold Road and the Gower Homes development (Maes Gwyrdd). This watercourse discharges into the ordinary watercourse flowing in a southeast direction along the eastern site boundary.

Refer to topographical survey in Appendix 1 and Coopers Drawing No. 7956/SK01 for details of the existing drainage arrangement.

Priority Level 4

The nearest surface water water sewers recorded on the Welsh Water sewer maps are within the St Giles Park development to the north of the development. These are part of a large diameter on-line attenuation system before the flows are passed forward to the ordinary watercourse. A gravity connection into the surface water sewers from the development site will not be achievable.

There will also be a highway drainage network within the A541 (Mold Road) to the west of the development site. However, this is unlikely to provide a gravity connection from surface water flows within the site due to site levels.

As a connection into a higher priority level is possible a connection into the surface water sewer / highway drain should not be considered.

Priority Level 5

The nearest combined sewer is approximately 200m north of the development in Hardwick Drive (Redrow development). A gravity connection into the surface water sewers from the development site will not be achievable.

As a connection into a higher priority level is possible a connection into the combined sewer should not be considered.

5.5 <u>SuDS Approval Bodies</u>

Since January 7th, 2019, all new developments will require sustainable drainage for surface water if there are at least 2 No. properties or the construction area is more than 100sq.m. The surface water drainage systems must be designed and built to meet Welsh Government standards for sustainable drainage.

These systems must be approved by the local authority acting in its SuDS Approving Body (SAB) role before construction work begins. The SAB will have a duty to adopt compliant systems.

Every SuDS application should go to every attempt to satisfy the Principles and Standards of the legislation. When vetting an application, the SAB officer will look at the clear red line boundary area of the site when considering space for SuDS and water management features and not the space that's left on the proposed site layout.

The principles are as follows:

SuDS schemes should aim to:

- 1. manage water on or close to the surface and as close to the source of the runoff as possible;
- 2. *treat rainfall as a valuable natural resource;*
- *3. ensure pollution is prevented at source, rather than relying on the drainage system to treat or intercept it;*
- 4. manage rainfall to help protect people from increased flood risk, and the environment from morphological and associated ecological damage resulting from changes in flow rates, patterns and sediment movement caused by the development;
- 5. *take account of likely future pressures on flood risk, the environment and water resources such as climate change and urban creep;*
- 6. use the SuDS Management Train, using drainage components in series across a site to achieve a robust surface water management system (rather than using a single "end of pipe" feature, such as a pond, to serve the whole development);
- 7. maximise the delivery of benefits for amenity and biodiversity;
- 8. seek to make the best use of available land through multifunctional usage of public spaces and the public realm;
- 9. perform safely, reliably and effectively over the design life of the development taking into account the need for reasonable levels of maintenance;
- 10. avoid the need for pumping where possible; and
- 11. be affordable, taking into account both construction and long-term maintenance costs and the additional environmental and social benefits afforded by the system.

Applicants seeking SAB Approval must demonstrate how they have complied with these principles or provide justification for any departure.

As noted in 5.4 there is no site investigation report or infiltration test results for review at this stage, so whilst the preferred option would be to discharge all surface water via infiltration, we have developed a strategy based on the site being underlain with clay. This would give us a design flow rate of 15.7 l/s and would require an attenuated surface water design before flows are passed forward to the watercourse at a restricted flow rate.

The surface water strategy presented in Appendix 1 is providing all attenuation within a SuDS basin at the end of the network with a hydro brake flow control device to restrict the flows. This is considered to be a 'end of pipe solution' and whilst it complies with standards for quantity it provides limited compliance to other criteria such as water quality, amenity and biodiversity. Therefore, incorporation of additional source control SuDS components such as water butts, permeable paving and bio retention (tree pits and rain gardens) will need to be considered further at detailed design stage.

5.6 <u>Foul Drainage</u>

We are proposing to discharge all foul flows into the foul gravity network within the St Giles Park development to the north of the development site. However, a gravity connection will not be achievable and therefore a foul pumping station will be required at the eastern (lower) end of the site allowing flows to then be pumped along a rising main to a suitable discharge point within the St Giles Park foul public sewer network.

We are currently waiting for a response from a Welsh Water pre-planning enquiry that foul flows can be accommodated within the St Giles Park gravity foul public sewer.

6.0 Conclusions and Recommendations

The site is located in Flood Zone 1 and has been shown to be at low risk of flooding from rivers, surface water, groundwater, sewers and climate change. Therefore, mitigation measures are not considered necessary for any future development at the site.

All potential sources of flooding have been considered as part of this report. There are no known records of historical flooding at the site.

No site investigation or infiltration tests have currently been undertaken to confirm the ground conditions and underlying soils, but local geology mapping and available data for neighbouring sites indicates there is potential to drain at least a portion of the site via infiltration. We advise undertaking the necessary site investigations as soon as possible.

The surface water strategy presented in Appendix 1 is providing all attenuation within a SUDS basin with a flow control device to restrict the flows. This is based on no infiltration and all flows discharging into this network. Following site investigation and infiltration tests there may be opportunity to reduce this volume if infiltration components are incorporated into the design.

All surface water run-off from highways, roof and private drives will be collected into gravity piped networks, temporarily stored in a SuDS basin and will discharge at a restricted rate into the watercourse which mimics the existing situation.

Additional on-site source control components such as permeable paving and bioretention components (tree pits and rain gardens) should be considered further at detailed design stage for compliance with the 5mm interception criteria.

The design flow rate will be based on greenfield flow rates and will be confirmed once the soil classification for the development site has been established using confirmed data and not a theoretical soil type.

The development will increase the impermeable area of the site. This results in an increase in surface water runoff rates and volumes. In order to ensure the increase in runoff will not have an impact elsewhere flow restrictions and on-site attenuation will be incorporated into the design.

The provision of trapped highway gullies, the SUDS detention basin and additional source control components will provide adequate treatment to surface water flows prior to discharge to the watercourse.

All foul sewers should be designed in accordance with Sewers for Adoption 7th Edition / Welsh Ministers Standards and will be subject to S104 Agreement.

A SuDS Maintenance and Management Plan should be produced to outline the activity and frequency of inspections and maintenance works required on any SuDS components subject to SAB Approval / Adoption.

This Flood Consequences Assessment and Drainage Strategy should be submitted to the Local Planning Authority in support of the planning application.

Since January 7th, 2019, all new developments will require sustainable drainage for surface water if there are at least 2 No. properties or the construction area is more than 100sq.m. The surface water drainage systems must be designed and built to meet Welsh Government standards for sustainable drainage.

These systems must be approved by the local authority acting in its SuDS Approving Body (SAB) role before construction work begins. The SAB will have a duty to adopt compliant systems.

Flood Consequences Assessment and Drainage Strategy for Land off Mold Road, Gwersyllt, Wrexham

Appendix 1

Reference Drawings

Drawing No.	<u>Revision</u>	Title
B444-00_Figure 01	01	Topgraphic and GPR Utiltity Survey
7956 / SK01	D	Drainage Strategy
7956 / SK02	В	Highway and Drainage Longsections
7956 / SK03	В	SW Impermable Areas

Welsh Water Sewer Records

	This CWL info to/t Ltd.	informa S Ltd, II rmation by any t Subject	ition is conf is released shall be dis hird party w to Terms d	idential an on the c closed or rithout pric & Condition	d the cop ondition th reproduced or written ns a copy	yright property of nat none of the I in whole or part consent from CWI of which is avail
	upo Sui Ma Coi CW	n reques rvey Con pping pu nstructic /LS Ltd	trol Markers Irposes only n or Setting	have bee and shoul g—Out with	n establish d not be out writter	ied for Topograph used for n approval from
• 14.74	Leo	gend RS R GY R LP L EP E	oad Sign oad Gulley ighting Column or lectric Transmissi	Post on Pole	<u>мн</u> О Мн П	PGM / Site Control Statio Manhole Cover Circular Manhole Cover Rectangu
 €84.79 €84.80 €84.80 		GP G	ate Post ate ree/Large Shrub	getation Canop	y	Kerb Channel Line Kerb Top/Back Verge Fenceline
+ 44.95 + 84.95 + 84.96 + 84.86 + 94.85 +	St 1 2 3 4 5 6 7	tation BURIED	Eastin 332157.25 332145.81 332109.61 332106.21 332102.20 332098.16 332095.77 ASSETS D	g No 2 352 8 352 4 352 7 352 9 352 1 352 ETECTEC	orthing 364.969 375.469 388.312 412.092 455.922 499.726 539.062 OON SITE	Level 91.145 92.508 94.094 93.906 93.571 93.178 92.890
.95 +85.05 +85.15 +85.19 +85.11		INETYPE -BTCAT TELE	——ВТ——— /————	SERVIC TELEC TELEC TELEC	CE DESCRIPTI OMMUNICATIO OMMUNICATIO	ON DNS (BT) DNS (CATV) DNS (OTHER)
+85.36 +85.37 +85.30 +85.15 G +85.45 +85.45 +85.25		-G	SL	 TRAFFI STREE LOW V HIGH V 	IC CONTROL S T LIGHTING DLTAGE OLTAGE	SENSOR UNIT
excess rvegration		- W FWE SWE FWR CS	W	- WATER FOUL V - SURFA FOUL V - COMBI	VATER DRAIN CE WATER DF VATER RISING NED SEWER	AGE RAINAGE B MAIN
		0F U(GP U(EM OT ENE	R) L) D OF TRACE	OIL/FUI UNKNC UNKNC	el DWN UTILITY (DWN UTILITY (ASSUMED RO	GPR) RADIO) DUTE
		01 07	7/12/21	CW	TB	CW
visclaimer: avored to locate as many buried servi the Best Available Technology (BAT) ast available Techniques as defined u the The Survey Association (TSA) an	ices as and inder id the British	arl V	/illiams	s Land	d Sur	veys Ltd
ser of this drawing should be aware the sing Best Available Technology are sub- ances resulting from geophysical pro (which can be a significant limitation/ it of the control of the operator, being ned. In addition survey findings are in and thus are subject to interpretative ations. This information is given withous nereof cannot be guaranteed.	hat the ubject to operties of /inhibter to terpreted on e and ut warranty, Cli Cawing,	ent astle	e Gree	infc ww n Hor	©cwland w.cwland NCS	15 Millfield Neston CH64 3TF Isurveys.com Isurveys.com
anteed or indemnified, and should on efined by the Health & Safety Execut 647. awing indicating the presence of buri e indicating the presence of closely burnes, therefore the user of this drawing single line is indicative of the number In addition services below detected in detection by the shadow cast from s	ed services undled Joi g should not of services L d utilities may	^{b Title} and wers	off Mc yllt	old Ro	ad	
mmunication cables and earth bonds magnetic fields similar to that of high cables under load, if alternating elect se proximity from other power cables	can n voltage ctromagnetic or Dro	awing Ti	tle			
n of the services (i.e. is the detected s s pipe?) is open to interpretation and of references such as visible surface ves, or gas meter) and utility provider ther high voltage or low voltage). The loyed is limited in its ability to define The user of this drawing should prov	service a is based features records best the exact ve, by means documents	opog tility	Surve	& G eys	РК	
ion, the type of service if critical to the <u>loyed:</u> iency Ground Penetrating Radar (GP r interpretation.	e design. Pic R) with Dru	ot ID awing S	1: 500 tatus			
RD8000 & T10 Electromagnetic Gen > Locator.	herator and F	or In ^{b No}	format 00	Drawing	^{No}	Issue 01

	De	ownstream Manhol	е
ver	Number	Invert	Cover
91.95	S2	89.13	90.65
90.65	S4	87.82	89.98
89.98	S5	87.57	90.19
90.19	S 6	87.46	90.51
90.51	S7	87.42	90.43
90.43	S8	87.38	90.14
90.14	S9	87.31	89.24
89.24	S10	87.01	88.58
88.58	S11	86.19	88.84
88.84	S12	85.83	88.51
88.51	S13	85.81	88.06
88.06	S14	85.29	86.94
86.94	S17	85.16	86.87
86.87	S18	85.00	86.89
86.89	S19	84.82	86.68
86.68	S20	84.79	86.60
86.60	S21	84.50	86.60
86.60	S22	84.47	86.40
86.40	S23	84.42	85.50
89.76	S4	87.75	89.98
87.47	S16	85.71	87.15
87 15	C17	05 00	00.07
07.10	517	85.39	86.87
57.15	D	ownstream Manhol	86.87
ver	Di Number	ownstream Manhol Invert	le Cover
ver 91.74	Number F2	ownstream Manhol Invert 88.70	86.87 e Cover 90.48
ver 91.74 90.48	Number F2 F3	ownstream Manhol Invert 88.70 88.30	86.87 e Cover 90.48 89.93
ver 91.74 90.48 89.93	Number F2 F3 F4	85.39 ownstream Manhol Invert 88.70 88.30 88.14	86.87 e Cover 90.48 89.93 90.24
ver 91.74 90.48 89.93 90.24	Number F2 F3 F4 F5	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00	86.87 Cover 90.48 89.93 90.24 90.50
ver 91.74 90.48 89.93 90.24 90.50	517 Du Number F2 F3 F4 F5 F6	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95	86.87 Cover 90.48 89.93 90.24 90.50 90.48
ver 91.74 90.48 89.93 90.24 90.50 90.48	Dumber F2 F3 F4 F5 F6 F7 F7	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89	86.87 Cover 90.48 89.93 90.24 90.50 90.48 90.22
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22	Dumber F2 F3 F4 F5 F6 F7 F8 F7	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70	e Cover 90.48 89.93 90.24 90.50 90.48 90.22 89.05
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05	Di Number F2 F3 F4 F5 F6 F7 F8 F9	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40	e Cover 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75	Di Number F2 F3 F4 F5 F6 F7 F8 F9 F10	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28	e Cover 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.77	Di Number F2 F3 F4 F5 F6 F7 F8 F9 F10 F11	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28 86.72	e Cover 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37	Dr Number F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28 86.72 86.33	86.87 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37 87.98
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.77 88.37 87.98	ST/ Dr Number F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 State	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28 86.72 86.33 84.85	86.87 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37 88.37 88.37 88.37
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.77 88.37 87.98 86.85	Number F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F16	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28 86.72 86.33 84.85 84.65	86.87 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37 88.37 88.37 88.37 88.37
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.77 88.37 87.98 86.85 86.84	ST/ Dr Number F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F16 F17 F18	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28 86.72 86.33 84.85 84.65 84.24	86.87 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37 88.37 88.37 88.37 88.37
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37 87.98 86.85 86.84 86.92	ST/ Diamond F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F16 F17 F18 F18	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28 86.72 86.33 84.85 84.65 84.24 84.06	86.87 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37 88.37 88.37 88.37 86.85 86.84 86.82 86.84 85.49
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.77 88.37 89.38 80.34 89.39 90.24 90.22 89.05 88.75 88.75 88.37 87.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.38 85.39 85.39	ST/ Diamond F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F16 F17 F18 F19	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28 86.72 86.33 84.85 84.65 84.65 84.24 84.06 84.03	86.87 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37 87.98 86.85 86.84 86.82 86.84 86.92 85.49 85.48
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.77 88.37 87.98 86.85 86.84 86.92 85.49 85.48	ST/ Diamond F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F16 F17 F18 F19 F20 F20	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28 86.72 86.33 84.85 84.65 84.24 84.06 84.03 84.01	86.87 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.75 88.77 88.37 87.98 86.85 86.84 86.82 85.49 85.48
ver 91.74 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37 87.98 86.85 86.84 86.85 86.84 86.92 85.49 85.48 87.44	ST/7 Number F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F16 F17 F18 F19 F20 F15	85.39 ownstream Manhol Invert 88.70 88.30 88.14 88.00 87.95 87.89 87.70 87.40 87.28 86.72 86.33 84.85 84.65 84.65 84.24 84.06 84.03 84.01 84.91	86.87 90.48 89.93 90.24 90.50 90.48 90.22 89.05 88.75 88.75 88.77 88.37 87.98 86.85 86.84 86.82 85.49 85.48 85.45 87.18

Note

- This is a preliminary design demonstrating a drainage solution is achievable to discharge flows from the proposed development.
- 2. The specification in all respects shall be in accordance with the current Wrexham CBC Specification and Construction publication in force in the county at the time of construction.

Legend

Site Boundary Existing Existing Highway Sewer Existing Foul Sewer Existing Surface Water Sewer Ordinary Watercourse Culvert Proposed Adoptable Surface Water Sewer Adoptable Foul Sewer FFL 47.40 Slab Level Wall Wall Wall UB UB UB UB UB UB UB UB FOE FOE Flag On Edge Rising Main +0.85 Depth of fill (Existing to -0.95 Proposed)

Retention of 300mm and above has been shown for strategy stage. Small retaining features and underbuild of up to 225mm will also be required at other locations and will be shown at detailed design stage

Note:

STRATEGY

D	18.11.22	Updated to suit revised layout	PW	AJ		
С	07.09.22	Updated to suit revised layout	AJ	AJ		
В	04.05.22	Updated to suit revised layout	PW	AJ		
А	05.04.22	Dry Basin moved to suit client comment	PW	AJ		
Rev.	Date	Revision B		Appd.		
Tel: 01 Email:	COOPERS chartered consulting engineers Chartered consulting engineers Park House Sandpiper Court Chester Business Park Chester					
web. I	mp.//coopers.c	0.00	Cr	14 9QU		
Castle						
Project	MOL	D ROAD, GWERSYLL WREXHAM.	_T,			
Title		Drainage Strategy				

DRAWING NUMBER	SCALE at A0	1:500	
	DATE	25.03.22	REVISION
7956 / SK01	DRAWN	PW	П
	CHECKED	AJ	D

R3
CHAINAGE
EXISTING GROUND L
ALIGNMENT LEVEL
HORIZONTAL ALIGN
STORMWATER COVE
STORMWATER INVE
FOULWATER COVER

© Copyright The original of this drawing contained coloured symbols and/or features. Any black and white reproduction should not be relied upon.

'S' bed and surround to all pipes
stated otherwise.
'Z' bed and surround to pipes
cover < 1.2m as indicated on
ections.

All connections are soffit to soffit

<u>KEY PLAN</u>

Notes

- 1. All dimensions are in millimetres unless otherwise shown.
- 2. All adoptable drainage shall be constructed in accordance with 'Sewers for Adoption' 7th Edition, Welsh Ministers Standards and Welsh Water Details and Guidelines.
- 3. All private drainage works are to comply fully with Part H of the Building Regulations.
- . All existing invert levels to be checked by the contractor at the start of works and any other discrepancies notified to the Engineer prior to commencing works. All levels are based on topographical survey information provided by others.
- 5. It is the responsibility of the Contractor to verify all information given with regards to existing services and drainage connections etc. prior to commencing the works.
- 6. The Contractor shall adhere to the CDM Regulations at all times.
- 7. Only trained personnel shall be permitted to enter confined spaces. 8. All materials to bear the relevant B.S. Kitemark and comply fully with the Sewers for Adoption 7th Specification. All concrete & concrete products must use Sulphate resistant cement (unless the site investigation report proves that sulphate attack from soils and groundwater will not occur to withstand a class 3 condition).
- All opening notices etc. as required under Highways Acts etc. are to be obtained prior to commencement of works. All works are to be inspected by L.A., NHBC or Welsh Water as applicable.
- 10. Trench backfill in highways to within 1m of highway shall, as directed by the Highway Authority be a suitable granular material all in accordance with Sewers for Adoption.
- 11. Cover loadings shall be as detailed on the Manhole Schedule.
- 12. Drain trenches should not be excavated lower than the foundations of any building nearby unless either: a) The trench is within 1m of the foundation, the trench is filled with concrete up to the lowest level of the foundation, or b) Where the trench is further than 1m from the building, the trench is filled with concrete to a level bellow the lowest level for the building equal to the distance from the build, less 150mm.
- 13. All SVP and RWP connections are indicative and shall be confirmed by the client.
- 14. Pipe gradients out of the building to connecting manhole to be laid at 1:40 in accordance with Building Regulations, Part H, Table 6.
- 15. Where pipe sizes are not indicated : 100Ø to be used for foul 100Ø to be used for surface water unless stated otherwise.
- 16. Minimum surface water gradients shall be: 100Ø laid at 1:100 with the exception of the first connection which shall be minimum 1:60 150Ø laid at 1:150
- 17. Minimum 100Ø foul drainage gradient to be 1:80 with the exception of the first connection which shall be minimum 1:40.
- 18. Manhole covers to be marked FWS or SW as appropriate.
- 19. All manhole covers and frames shall comply with BS EN124. All adoptable manholes and chambers shall comply with Sewers for Adoption 7th Edition. Covers in roads to be grade D400 and be 150mm deep. Manhole covers in car parking areas and drives to be grade B125 and covers in landscaping areas to be grade A15. All to be sized in accordance with Building Regulations Part H, Tables 11 & 12. "In-fill" type covers should not be used. Where a cover is located in an area of block paving, the bottom of the frame should be 150mm deep.
- 20. Precast concrete rings to be reinforced.
- 21. Backdrops in private manholes / inspection chambers to be internal
- 22. Private drains laid under adopted / private roads to be Class S granular bed and surround with a minimum of 1.2m cover, where this cannot be achieved a Class Z concrete bed and surround shall be provided.
- 23. Private drains located under landscape areas or driveways / car parking bays to be Class B granular bed and surround with a minimum 0.6m cover, where this cannot be achieved a Class Z concrete bed and surround shall be provided.
- 24. Pipes have not been designed to accommodate construction traffic loading. The contractor is responsible for providing adequate protection to the pipes during construction.
- 25. Slab levels shall not be varied without reference to the Engineer for guidance. 26. The developer must self-vet and certify that the design criteria, material
- standards and workmanship specifications for the proposed adoptable sewers are in accordance with those set out in "Sewers for Adoption" 7th Edition (SFA 7th), The Welsh Ministers Standards and the requirement of DCWW as the Statutory Sewerage Undertaker.
- 27. Subject to a Section 104 Adoption Agreement being complete, a Section 106 application to connect must be made to DCWW the developer shall be given 21 days notice prior to connection. The works may only be undertaken by an SSIP Health & Safety approved contractor.

Flood Consequences Assessment and Drainage Strategy for Land off Mold Road, Gwersyllt, Wrexham

Appendix 2

Infiltration Consideration

Drawing No.

Revision <u>Title</u>

_

7956 / SK04

Infiltration Consideration

BGS Borehole Information

BGS Geology Mapping

SJ 35 SW 35 3191 5214 South of Stansty Park, Gwersyllt 1 400. 121	Block B
³ Surface level $(+98.4 \text{ m}) + 323 \text{ ft}$	Overburden 1.0 m
Water not struck	Mineral 2.0 m
Shell and auger 8-in (203 mm) diameter	Waste 0.9 m

March 1977

Waste 0.9 m Mineral 13.6 m Bedrock 0.4 m +

2 ł

LOG eological Survey			
Geological classification	Lithology	Thickness m	Depth m
	Made ground	0.3	0.3
	Clay, sandy with coarse subrounded pebbles and cobbles of quartzite, limestone, sandstone and igneous material	0.7	1.0
Glacial Sand and Gravel	 Clayey' sandy gravel Gravel: coarse with fine and cobbles. Composed of subrounded to rounded quartzite with limestone and some quartz, sandstone, chert and igneous material Sand: medium with coarse and fine, subangular to subrounded, reddish brown 	2.0	3.0
	Clay, red-brown, slightly sandy with pebbles and cobbles at the top. Becomes less sandy and pebbly with depth passing into laminated clay with silt and sand partings	0.9	3.9
British Geological Survey	b Gravel, contains a thin pebbly clay between 13.5 m and 13.7 m Gravel: fine and coarse with cobbles, subangular to rounded quartzite and limestone with sandstone, igneous material and traces of quartz, chert and other sediments Sand: buff, fine, medium and coarse, subrounded quartz and quartzite with traces of coal	13.6 n Geological Survey	17.5
Coal Measures	Mudstone, pale grey, silty	0.4 +	17.9

GRADING

	Mean for deposit percentages			Depth below surface (m)	percenta	ages	es						
	Fines	Sand	Gravel		Fines	Sand			Gravel				
					- 16	+ 16-1	+1-1	+1-4	+4-16	+ 16-64	+ 64		
8	13	39	48	1.0–2.0 2.0–3.0	18	- <u>11</u> 7	29 16	10 6	12 17	20 36	0 10		
				Mean	13	9	22	8	15	28	5		
ish Geologica Sulvey	7	40	53	3.9–4.9 4.9.5.0	15 15 2	46	19	5	Brysh Geo	o <mark>gical Survey</mark> 26	0		
				4.9-3.9 5.9-6.9	2	2	6	18	23	22	27		
				6.9-7.9	2	6	11	14	25	32	10		
				7.9-8.9	2	5	8	17	38	30	0		
				8.9–9.9	3	14	16	7	13	24	23		
				9.9-10.9	2	9	11	10	19	32	17		
				10.9-11.9	3	6	14	16	21	17	23		
				11.9–13.5	6	4	6	10	14	48	12		
				13.7-15.5	11	20	23	12	15	19	0		
				15.5-16.5	13	31	22	11	12	11	0		
				16.5–17.5	6	22	21	21	11	11	8		
				Mean	7	14	14	12	16	24	13		
a + b	8	39	53	Mean	8	13	15	11	16	25	12		

Percentages by weight in +8 mm fraction Depth below surface (m) Other Chert, sediments flint Quartzite Sandstone Limestone Igneous Quartz 2 72 2 17 3 3 1 1.0-3.0 8 3.9–6.9 6.9–9.9 9.9–13.5 13.7–17.5 Ь 50 2 45 3 1 Trace Trace 17 12 2 6 Trace 63 Trace 43 53 12 16 39 1 Тгасе 6 1 Trace 28 1 1 1

1	a and a set	
11		
₫ •	(SJ 35 SW 40) 3252 5244 Lower Stansty, Gwersyllt 1"n	o. 21 Block B
	Surface level (+85.8 m) + 282 ft Groundwater conditions not recorded Shell and auger 8-in (203 mm) diameter March 1977	Overburden 3.9 m Suney British Geo Mineral 8.3 m Waste 4.1 m Mineral 7.7 m +

LOG

Geological classification	Lithology	Thickness m	Depth m
	Made ground, ashes and slag	3.0	3.0
Boulder Clay	Clay, orange-brown to grey with occasional thin sandy laminae and coarse sandstone clasts	0.9	3.9
Glacial Sand and Gravel	Gravel, becomes sandy and clayey at the base Gravel: fine and coarse, with cobbles between 6.9 m and 7.9 m. Subrounded quartzite with sandstone, limestone, volcanics and some quartz Sand: brown, fine, medium and coarse, subangular to subrounded	8.3	12.2
Glacial Silt	Clay, alternating with silt and clayey sand	4.1	16.3
Glacial Sand and Gravel	Gravel British Geological Survey British Geological Survey British Geological Survey British Geological Survey Gravel: coarse and fine with cobbles, subrounded quartzite with volcanics, sandstone, limestone and some quartz, chert and other sediments Sand: coarse, medium and fine, subrounded	ological Xu 7 e y	24.0

GRADING

		Mean for deposit percentages			Depth below surface (m)	percente	ages					
		Fines	Sand	Gravel		Fines	Sand			Gravel		
						$-\frac{1}{16}$	$+\frac{1}{16}-\frac{1}{4}$	$+\frac{1}{4}-1$	+ 1-4	+4-16	+ 16-64	+ 64
8		6	42	52	3.9-4.9	2	3	15	18	33	29	0
					4.9-5.9 5.9-6.9	1 2	5 12	17	12	33 27	42 27	0
British Geological S					6.9-7.9 7.9-8.9	2 Sung	4 10	6 13	12 18	28 Bri 32 Geolog	25 24	23 0
					8.9–9.9 9.9–12.2	2 15	4 53	6 10	18 6	27 11	43 5	0 0
					Mean	6	18	11	13	25	24	3
b	b	4	31	65	16.3-16.8	4	2	2	6	21	48	17
(16.8-17.5	3	6	28	37	24	2	0
l					17.5-19.0	2	7	11	8	27	34	11
					19.0-20.0	3	4	12	6	10	46	19
					20.0-21.5	8	12	9	6	17	29	19
					21.5-24.0	4	7	12	14	35	28	0
					Mean	4	7	12	12	25	31	9
	a + b	5	37	58	Mean	5	13	12	12	25	27	6

COMPOSITION

	Depth below surface (m)	Percentages by weight in +8 mm fraction								
		Quartz	Quartzite	Sandstone	Limestone	Other sediments	Igneous	Chert, flint		
8	3.9-6.9 6.9-12.2	3 2	66 76	9 4	6 7	2 4	14 5	Trace 1		
b	16.3–19.0 19.0–24.0	1 2	46 64	20 4	22 20	5 1	5 8	1		

Page 1 | Borehole SJ35SW960 | Borehole Logs

Contract No. 1690 (75.209. Location Wrexham - Rhos Client Denbigh County	robin . Archit	for a Convey			Boreho Groun Date	d Lev 201	o. Artish Geold el Janu	igical Surve 1 ary ,
	BOR	REHO		LOG				
STRATA	Legend	Depth below Ground Level	Thickness of Strata	Type of Sample	e. ib./sq. ft.	Ø deg.	m.c. %	y ib./cu.ft
Top Soil.		1'6"	ı'6"					
Soft Brown Sand with Slight Clay and Stones	3.	2'6"	1'0"					
Stiff Brown Clay with Sand. Nogical Survey	British Ge	ological Survey 4 ' 6 "	2'0"	3'6'	1800		Bjitis 1237 old	ical 312
Brittle Reddish Clay with Pebbles and Sand,			616"					
logical Survey	British Ge	נו 'O" dogical Survey					British Geolo	gical Surve
cogical Survey	British Ge	ological Survey					Brijsh Geolo	ig cal Surve

. .

[
STRATA SURVEYS LTD.,		Trial Pit No. : 3
HOLMÉS CHAPEL ROAD,		Sheet No. 1 Of 1.
MIDDLEWICH, CHESHIRE. CW10	0JB	Depth 0 to 4 metres.
Telephone: 0606 84 4637 Fax: 060	06 84 6657Geological Survey	Dates : 31st August 1990
Job Number : 5687 Locatio	n : Tv Gwvn Lane, Wrexham,	Equipment and Methods
Client : Whelmar (Chester) Lt	d	Engineer: nfi 352430
Description of Strata	Red. Legend Thick Depth Sam	ple SampleNMC Cu Remarks
		ths lypes
Grass over dark prown sandy lopsoil	(0.40) 0.20	D 1
very compact dry light brown clayey		
	0.90	
very sandy CLAY with bands of		
riner-medium grained sand.		
compact peddish brown	2.00	
fine-medium-coarse grained SAND with	British Geological Surve	Bitish Geological Survey
occasional rounded cobble		
	(1.50)	
	E 3.50	For of Pit
End of Trial Pit		
Key Pp Pocket Pen	etrometer	General Remarks
Sample Types Progress / Watu	er Levels	No water encountered during excavation.
D Disturbed <u>W</u> Nater Level		
W Water	KE	
In-Situ Tests Y Yane Test	Dritich Coological Suprav	Dritich Coological Suprov
Pb Plate Bearing Test CBR In-Situ CBR Test	british deological survey	Diffian Geological Survey
Sketch/Plan		
British Geological Survey		British Geological Survey

7956 Land off Mold Road, Gwersyllt, Wrexham

BGS Geology Mapping Information

Flood Consequences Assessment and Drainage Strategy for Land off Mold Road, Gwersyllt, Wrexham

Appendix 3

Correspondence

Dwr Cymru Welsh Water Historical Flooding

Wrexham County Borogh Council Historical Flooding

Natural Resources Wales Historical Flooding

Andy Jones

From:	Environmental Information Requests < EnvironmentalInformationRequests@dwrcymru.com>
Sent:	11 March 2022 15:20
То:	Andy Jones
Subject:	RE: FCA Land off Mold Road, Gwersyllt, Wrexham

Dear Mr Jones

Request for information

We refer to your request for information which was received on 4th March 2022.

We are dealing with your request as one made under the Environmental Information Regulations 2004 ("the Regulations").

In accordance with the Regulations, we will respond to your request within 20 working days of the date of receipt.

For completeness, we advise that the Information Commissioner's Office states that the time period for responding should be calculated from the day after the request is received.

In the meantime, if you have any queries, please contact us on email at EnvironmentalInformationRequests@dwrcymru.com

We have assigned reference **EIR/1086/2022** to your request. Please kindly note this in all correspondence with us regarding this matter.

Yours sincerely, Dŵr Cymru Welsh Water

From: Andy Jones <ajones@coopers.co.uk Sent: 04 March 2022 10:53 To: Sewerage Services <<u>Sewerage.Services@dwrcymru.com</u>> Subject: FCA Land off Mold Road, Gwersyllt, Wrexham

******* External Mail ******* 7956 Land off Mold Road, Gwersyllt, Wrexham FCA Historical Flood Information

To whom it may concern

We are undertaking a Flood Consequences Assessment and Drainage Strategy for the above site (see attached Site Location Plan) and request any information you may have in relation to historical flooding or any information you may consider relevant to assist with the production of the FCA report.

Please let me know if you require any further information or please contact me on the details below should you want to discuss further.

Regards

Andy Jones Senior Infrastructure Engineer

Andy Jones

From:	SAB <sab@wrexham.gov.uk></sab@wrexham.gov.uk>
Sent:	07 March 2022 13:59
То:	Andy Jones
Subject:	RE: FCA Land off Mold Road, Gwersyllt, Wrexham

Hi Andy,

I'll be dealing with these requests from now on.

Our systems are showing no historical flooding incidents and no underground sewers at the site.

The below map shows surface water flooding in relation to 1 in 30, 1 in 100 and 1 in 1000 year events.

If there is anything else you require let me know.

Regards,

James

From: Andy Jones <ajones@coopers.co.uk>
Sent: 04 March 2022 11:07
To: SAB <SAB@wrexham.gov.uk>
Subject: FCA Land off Mold Road, Gwersyllt, Wrexham

Hi James

Any idea who this email should be directed to? Either a email address or person would be helpful

Thanks

Andy

7956 Land off Mold Road, Gwersyllt, Wrexham FCA Historical Flood Information

To whom it may concern

We are undertaking a Flood Consequences Assessment and Drainage Strategy for the above site (see attached Site Location Plan) and request any information you may have in relation to historical flooding or any information you may consider relevant to assist with the production of the FCA report.

Please let me know if you require any further information or please contact me on the details below should you want to discuss further.

Regards

Andy Jones Senior Infrastructure Engineer **COOPERS** Park House, Sandpiper Court, Chester Business Park, Chester, CH4 9QU

☎: (01244) 684910
 番: (01244) 684911
 ☑: ajones@coopers.co.uk
 Web: http://www.coopers.co.uk

T: Direct Dial No. (01244) 684933

Rydym yn croesawu gohebiaeth yn Gymraeg. Byddwn yn ymateb i unrhyw ohebiaeth yn Gymraeg ac ni fydd hyn yn arwain at unrhyw oedi.

Ewch i weld - mi fedrwch chi dalu, rhoi gwybod, gwneud cais, dweud eich dweud, a dod o hyd i wybodaeth ar-lein yn www.wrecsam.gov.uk. Arbedwch bapur - meddyliwch cyn argraffu!

Mae'r neges e-bost hon ac unrhyw atodiadau wedi eu bwriadu ar gyfer yr unigolyn neu?r sefydliad y?i cyfeirir atynt yn unig. Am yr amodau llawn yngl?n ? chynnwys a defnyddio?r neges e-bost hon, ac unrhyw atodiadau, cyfeiriwch at www.wrecsam.gov.uk/top_navigation/disclaimersw.htm

Andy Jones

From:	Data Distribution <datadistribution@cyfoethnaturiolcymru.gov.uk></datadistribution@cyfoethnaturiolcymru.gov.uk>
Sent:	10 March 2022 15:13
То:	Andy Jones
Subject:	RE: ATI23023a Land off Mold Road, Gwersyllt, Wrexham

Dear Mr Jones,

Further to your recent email, please note that we do not have any detailed modelling for this location.

Self Service Open Data:

You can now make the most of open data provided free online:

- Please see the <u>Flooding</u> pages on the NRW website for the NRW Flood Risk Map Viewer and the Development Advice Map/Flood Map for Planning. You will find many spatial risk layers including the Flood Risk Assessment Wales (FRAW) maps, reservoir hazard data, Recorded Flood Extents, flood defences and more.
- <u>DataMapWales</u>: Spatial data is free to download, view and use within your own GIS system. The flood datasets include: Flood Risk Assessment Wales (FRAW) Maps, Flood Map for Planning (FMfP), Recorded Flood Extents, Flood Defences, Areas Benefitting from Flood Defences, FMfP TAN 15 Defences Zones and LIDAR data.
- Please note that you can find a GIS layer of our flood models in the Flood Map for Planning viewer. This is not an exhaustive list but does give a good idea as to the most relevant models for an area. This can be accessed via the following link: https://flood-map-for-planning.naturalresources.wales/. Select the 'Detailed Map' tab and the layer in question is called 'NRW Local Model Manager'.

Please Note the Following:

- Extreme Sea Level Information around the Welsh coastline is available from: <u>Coastal Design</u> <u>Sea Levels - Coastal Flood Boundary Gauge Data (2018)</u>
- All information supplied will need to be verified by the recipient **PRIOR** to using in a Flood Consequences Assessment (FCA). We would expect to see a review of hydrology, in-channel survey, floodplain topography etc. to demonstrate the data is suitable for the purposes of producing an FCA. Please see our website for further information on <u>Modelling for Flood</u> <u>Consequence Assessments</u> and <u>Developing hydraulic models for flood risk</u>.
- Climate change allowances will need to be applied carefully to ensure compliance with <u>Welsh</u> <u>Government climate change allowances and flood consequence assessments.</u>
- For Coastal and Estuarine sites NRW will require assessment of wave overtopping. It is up to the developer to justify why an assessment *isn't* required.
- Shoreline Management Plan (SMP) information is available on our website via our <u>Flood Risk</u> <u>Viewer Map</u> and also on Welsh Government's <u>DataMapWales Portal</u>. You may need to consider the policy implications of the SMP when assessing the suitability and sustainability of new development on your site of interest. For proposed development sites in Gwynedd & Anglesey a Local Development Plan Policy (POLICY ARNA 1: Coastal Change Management)

sets out how the Local Planning Authority will consider new development proposals within a Coastal Change Management Area. We recommend that you contact the relevant Planning Authority for further information and guidance in relation to this.

Pre-application Advice: As part of our advice service to developers, NRW offer a free initial opinion on your proposal. However, in cases where you would like to access any extra advice that falls outside of our statutory duties, we can only offer this as part of our Discretionary Planning Advice Service (DPA Service). For more information regarding free service and our discretionary planning can be found in the following links: <u>Welsh Version</u> / <u>English version</u>.

Your request for our free or charged discretionary advice service needs to be accompanied by the relevant 'Request Form' which is available to download from our website. You will then need to send the form to <u>northplanning@cyfoethnaturiolcymru.gov.uk</u> who will coordinate our response.

Apologies we could not have been of any further assistance to you in this matter.

Yn gywir / Yours sincerely,

Michelle Lewis

Cyfoeth Naturiol Cymru / Natural Resources Wales Ffôn/ Phone: 03000 653577 Symudol / Mobile: 07917243096 Office Location Llys Afon, Hwlffordd / Office Location River Court, Haverfordwest Cwsmer, Cyfarthrebu a Masnach - Customer, Communications and Commercial Oriau gwaith arferol/Normal working hours – Mon-Fri, 9 to 5

Yn falch o arwain y ffordd at ddyfodol gwell i Gymru trwy reoli'r amgylchedd ac adnoddau naturiol yn gynaliadwy.

Proud to be leading the way to a better future for Wales by managing the environment and natural resources sustainably.

cyfoethnaturiol.cymru / naturalresources.wales

Twitter | Facebook | LinkedIn | Instagram

From: Data Distribution
Sent: 07 March 2022 17:22
To: 'Andy Jones' <ajones@coopers.co.uk>
Subject: ATI23023a Land off Mold Road, Gwersyllt, Wrexham

Dear Mr Jones,

Thank you for your email concerning the above.

For historical mapping, please see this datalink - http://lle.gov.wales/catalogue/item/HistoricFl/?lang=en

Please note that we do not produce product 4s anymore. Please see the attached documentation for further information on this.

We can provide if the data is available, a product 5 which is the flood model report which is free of charge. Also a product 6 if available, which is the flood model raw output data which is also free of

charge. You would need the appropriate software to analyse the results, more information on this is in the attached. We could also provide product 7 which is the full flood model for a fee of £180.00 inclusive of VAT.

Please also accept this as an acknowledgement that your request has been received.

It can take up to <u>20 working days</u> to supply data that is not available <u>online</u>, therefore if you have any queries on your data request, please <u>contact us</u>.

For further information on what you can expect from us, please visit our website:

<u>Natural Resources Wales / Contact us</u> or call the Customer Hub on 0300 065 3000 (open 9am-5pm, Monday to Friday).

We will therefore be in touch in due course and provide if available, products 5 & 6 and advise on product 7.

Yn gywir / Yours sincerely,

Michelle Lewis

Cyfoeth Naturiol Cymru / Natural Resources Wales Ffôn/ Phone: 03000 653577 Symudol / Mobile: 07917243096 Office Location Llys Afon, Hwlffordd / Office Location River Court, Haverfordwest Cwsmer, Cyfarthrebu a Masnach - Customer, Communications and Commercial Oriau gwaith arferol/Normal working hours – Mon-Fri, 9 to 5

Yn falch o arwain y ffordd at ddyfodol gwell i Gymru trwy reoli'r amgylchedd ac adnoddau naturiol yn gynaliadwy.

Proud to be leading the way to a better future for Wales by managing the environment and natural resources sustainably.

cyfoethnaturiol.cymru / naturalresources.wales

Twitter | Facebook | LinkedIn | Instagram

From: Andy Jones <ajones@coopers.co.uk Sent: 04 March 2022 10:54 To: Data Distribution <<u>datadistribution@cyfoethnaturiolcymru.gov.uk</u>> Subject: FCA Land off Mold Road, Gwersyllt, Wrexham

7956 Land off Mold Road, Gwersyllt, Wrexham FCA Historical Flood Information

To whom it may concern

We are undertaking a Flood Consequences Assessment and Drainage Strategy for the above site (see attached Site Location Plan) and request any information you may have in relation to historical flooding or any information you may consider relevant to assist with the production of the FCA report.

Please let me know if you require any further information or please contact me on the details below should you want to discuss further.

Flood Consequences Assessment and Drainage Strategy for Land off Mold Road, Gwersyllt, Wrexham

Appendix 4

MicroDrainage Calculation

Source Control Greenfield Run-off Calculation

Preliminary Surface Water Design

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Andy Jon	es			Site Details				
Sito nomo:		d			Latitude:	53.06577° N			
Site name.		ia			Longitude:	3 01267° W			
Site location:	Wrexham					0.01207 11			
This is an estimation in line with Environm SC030219 (2013), t (Defra, 2015). This in the drainage of surfa	of the greenfie ent Agency gui he SuDS Manu formation on g ce water runof	Id runof idance " ual C753 ireenfield f from si	f rates that a 'Rainfall runo 3 (Ciria, 2015 d runoff rates ites.	re used to meet norm ff management for de) and the non-statuto ; may be the basis for	al best practice criteria velopments", ry standards for SuDS setting consents for Date:	3655278701 Mar 17 2022 16:38			
Runoff estimat	ion approa	ich	H124						
Site characteri	stics				Notes				
Total site area (ha): 2.88				(1) Is $\Omega_{\text{DAD}} < 2.0 \text{ J/s/ha?}$				
Methodology					(1) 13 QBAR < 2.0 1/3/114				
Q _{BAR} estimation r	method:	Calcula	ate from SF	PR and SAAR	When Q_{BAR} is < 2.0 l/s/ha then li	miting discharge rates are set			
SPR estimation n	PR estimation method: Calculate from SOIL			DIL type	at 2.0 l/s/ha.				
Soil characteristics Default Edited				dited					
SOIL type:	2		4		(2) Are flow rates < 5.0 l/s?				
HOST class:	N/A	٩	N/A		M/boro flow rates are less than 5	$r_{\rm c}$ than 5.0 1/c concert for discharge is			
SPR/SPRHOST:	0.3		0.47	7	usually set at 5.0 l/s if blockage f	rom vegetation and other			
Hydrological cl	naracterist	ics	Default	Edited	materials is possible. Lower cons	sent flow rates may be set			
SAAR (mm):			779	779	drainage elements.	see by using appropriate			
Hydrological regio	on:		9	9					
Growth curve fac	tor 1 year:		0.88	0.88	(3) IS 3PR/3PRIOST \$ 0.3?				
Growth curve fac	tor 30 years	:	1.78	1.78	Where groundwater levels are low enough the use c				
Growth curve fac	Frowth curve factor 100 years:			2.18	soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.				
irowth curve factor 200 years:			2 46	2.46					

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	5.95	15.76
1 in 1 year (l/s):	5.23	13.87
1 in 30 years (l/s):	10.59	28.05
1 in 100 year (l/s):	12.97	34.35
1 in 200 years (l/s):	14.63	38.76

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Coopers							
Park House	MOLD ROAD						
Sandpiper Court	WREXHAM						
Chester CH4 9QU	SW PRELIMINARY DESIGN	Mirro					
Date 18/11/2022	Designed by PW	Dcainago					
File 7956 SW01 REV B (50%).MDX	Checked by AJ	Diamaye					
Micro Drainage	Network 2020.1.3	·					

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for 7956 SW01 REV B.SWS

Pipe Sizes 7956 SW01 REV B Manhole Sizes 7956 SW01 REV B

FSR Rainfall Model - England and Wales Return Period (years) 100 PIMP (%) 100 M5-60 (mm) 18.000 Add Flow / Climate Change (%) 0 Ratio R 0.309 Minimum Backdrop Height (m) 0.000 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.000 30 Min Design Depth for Optimisation (m) 1.200 Maximum Time of Concentration (mins) Foul Sewage (l/s/ha)0.000Min Vel for Auto Design only (m/s)0.75Volumetric Runoff Coeff.0.750Min Slope for Optimisation (1:X)400

Designed with Level Soffits

Network Design Table for 7956 SW01 REV B.SWS

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ise	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
1.000	31.810	1.364	23.3	0.084	5.00		0.0	0.600	о	225	Pipe/Conduit	8
1.001	20.535	1.311	15.7	0.084	0.00		0.0	0.600	0	225	Pipe/Conduit	ā
2.000	18.270	0.076	240.4	0.040	5.00		0.0	0.600	0	300	Pipe/Conduit	8
1.002	16.957	0.100	169.6	0.084	0.00		0.0	0.600	0	375	Pipe/Conduit	ď
1.003	26.052	0.109	239.0	0.128	0.00		0.0	0.600	0	375	Pipe/Conduit	ď
1.004	10.993	0.046	239.0	0.084	0.00		0.0	0.600	0	375	Pipe/Conduit	Ū,
1.005	9.473	0.032	296.0	0.084	0.00		0.0	0.600	0	375	Pipe/Conduit	Ē.
1.006	22.584	0.075	301.1	0.084	0.00		0.0	0.600	0	375	Pipe/Conduit	d
1.007	35.583	0.301	118.2	0.084	0.00		0.0	0.600	0	375	Pipe/Conduit	- -
1.008	27.610	0.823	33.5	0.084	0.00		0.0	0.600	0	375	Pipe/Conduit	Ē
1.009	12.175	0.281	43.3	0.084	0.00		0.0	0.600	0	450	Pipe/Conduit	ă
1.010	9.593	0.024	399.7	0.084	0.00		0.0	0.600	0	450	Pipe/Conduit	Å

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	50.00	5.19	90.497	0.084	0.0	0.0	0.0	2.72	108.2	11.4
1.001	50.00	5.30	89.133	0.168	0.0	0.0	0.0	3.32	132.1	22.7
2.000	50.00	5.30	87.823	0.040	0.0	0.0	0.0	1.01	71.4	5.4
1.002	50.00	5.51	87.672	0.292	0.0	0.0	0.0	1.39	153.4	39.5
1.003	50.00	5.88	87.572	0.420	0.0	0.0	0.0	1.17	129.0	56.9
1.004	50.00	6.03	87.463	0.504	0.0	0.0	0.0	1.17	129.0	68.2
1.005	50.00	6.18	87.417	0.588	0.0	0.0	0.0	1.05	115.7	79.6
1.006	50.00	6.55	87.385	0.672	0.0	0.0	0.0	1.04	114.7	91.0
1.007	50.00	6.90	87.310	0.756	0.0	0.0	0.0	1.67	183.9	102.4
1.008	50.00	7.05	87.009	0.840	0.0	0.0	0.0	3.14	346.5	113.7
1.009	50.00	7.12	86.111	0.924	0.0	0.0	0.0	3.10	492.3	125.1
1.010	50.00	7.27	85.830	1.008	0.0	0.0	0.0	1.01	160.7	136.5
				©1982-2	2020 Innov	yze				

Coopers		Page 2
Park House	MOLD ROAD	
Sandpiper Court	WREXHAM	
Chester CH4 9QU	SW PRELIMINARY DESIGN	Mirro
Date 18/11/2022	Designed by PW	Desinado
File 7956 SW01 REV B (50%).MDX	Checked by AJ	Diamaye
Micro Drainage	Network 2020.1.3	

Network Design Table for 7956 SW01 REV B.SWS

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.011	23.264	0.444	52.4	0.084	0.00		0.0	0.600	0	525	Pipe/Conduit	ď
1.012	19.616	0.124	158.2	0.084	0.00		0.0	0.600	0	525	Pipe/Conduit	ď
3.000	20.803	0.122	170.5	0.084	5.00		0.0	0.600	0	225	Pipe/Conduit	ð
3.001	40.346	0.248	162.7	0.084	0.00		0.0	0.600	0	300	Pipe/Conduit	€
1.013	63.103	0.158	399.4	0.085	0.00		0.0	0.600	0	525	Pipe/Conduit	æ
1.014	45.670	0.114	400.6	0.085	0.00		0.0	0.600	0	600	Pipe/Conduit	<u>r</u>
1.015	10.095	0.025	403.8	0.085	0.00		0.0	0.600	0	600	Pipe/Conduit	ð
1.016	47.451	0.119	398.7	0.000	0.00		0.0	0.600	0	600	Pipe/Conduit	- Ē
1.017	8.717	0.022	396.2	0.000	0.00		0.0	0.600	0	600	Pipe/Conduit	ď
1.018	9.031	0.053	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	Ā

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.011	50.00	7.40	85.731	1.092	0.0	0.0	0.0	3.10	671.0	147.9
1.012	50.00	7.58	85.287	1.176	0.0	0.0	0.0	1.78	385.0	159.2
3.000	50.00	5.35	85.833	0.084	0.0	0.0	0.0	1.00	39.7	11.4
3.001	50.00	5.89	85.636	0.168	0.0	0.0	0.0	1.23	86.9	22.7
1.013	50.00	8.53	85.163	1.429	0.0	0.0	0.0	1.11	241.3	193.5
1.014	50.00	9.15	84.930	1.514	0.0	0.0	0.0	1.21	342.2	205.0
1.015	50.00	9.29	84.816	1.599	0.0	0.0	0.0	1.21	340.9	216.5
1.016	50.00	9.95	84.616	1.599	0.0	0.0	0.0	1.21	343.1	216.5
1.017	50.00	10.07	84.497	1.599	0.0	0.0	0.0	1.22	344.2	216.5
1.018	50.00	10.22	84.475	1.599	0.0	0.0	0.0	1.00	39.8«	216.5

Coopers		Page 3
Park House	MOLD ROAD	
Sandpiper Court	WREXHAM	
Chester CH4 9QU	SW PRELIMINARY DESIGN	Micro
Date 18/11/2022	Designed by PW	Dcainago
File 7956 SW01 REV B (50%).MDX	Checked by AJ	Diamage
Micro Drainage	Network 2020.1.3	

Manhole Schedules for 7956 SW01 REV B.SWS

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	91.948	1.451	Open Manhole	1500	1.000	90.497	225				
2	90.655	1.522	Open Manhole	1500	1.001	89.133	225	1.000	89.133	225	
3	89.756	1.933	Open Manhole	1500	2.000	87.823	300				
4	89.981	2.309	Open Manhole	1800	1.002	87.672	375	1.001	87.822	225	
								2.000	87.747	300	
5	90.195	2.623	Open Manhole	1500	1.003	87.572	375	1.002	87.572	375	
б	90.513	3.050	Open Manhole	1500	1.004	87.463	375	1.003	87.463	375	
7	90.433	3.016	Open Manhole	1500	1.005	87.417	375	1.004	87.417	375	
8	90.144	2.759	Open Manhole	1500	1.006	87.385	375	1.005	87.385	375	
9	89.240	1.930	Open Manhole	1500	1.007	87.310	375	1.006	87.310	375	
10	88.584	1.575	Open Manhole	1500	1.008	87.009	375	1.007	87.009	375	
11	88.844	2.733	Open Manhole	1500	1.009	86.111	450	1.008	86.186	375	
12	88.510	2.680	Open Manhole	1800	1.010	85.830	450	1.009	85.830	450	
13	88.062	2.331	Open Manhole	1800	1.011	85.731	525	1.010	85.806	450	
14	86.937	1.650	Open Manhole	1800	1.012	85.287	525	1.011	85.287	525	
15	87.472	1.639	Open Manhole	1500	3.000	85.833	225				
16	87.154	1.518	Open Manhole	1500	3.001	85.636	300	3.000	85.711	225	
17	86.872	1.709	Open Manhole	1800	1.013	85.163	525	1.012	85.163	525	
								3.001	85.388	300	
18	86.891	1.961	Open Manhole	1800	1.014	84.930	600	1.013	85.005	525	
19	86.681	1.865	Open Manhole	1800	1.015	84.816	600	1.014	84.816	600	
20	86.600	1.984	Open Manhole	1800	1.016	84.616	600	1.015	84.791	600	175
21	86.600	2.103	Open Manhole	1800	1.017	84.497	600	1.016	84.497	600	
22	86.400	1.925	Open Manhole	2400	1.018	84.475	225	1.017	84.475	600	
23	85.500	1.078	Open Manhole	0		OUTFALL		1.018	84.422	225	

Manhole Intersection Intersection Manhole Layout MH Manhole Easting Northing Access (North) Name Easting Northing (m) (m) (m) (m) 1 332122.947 352506.950 332122.947 352506.950 Required ---2 332154.737 352505.822 332154.737 352505.822 Required • 3 332176.033 352489.442 332176.033 352489.442 Required Ò 4 332175.186 352507.693 332175.186 352507.693 Required 5 332175.119 352524.650 332175.119 352524.650 Required

©1982-2020 Innovyze

Coopers							Page 4		
Park House			MOLD ROAD						
Sandpiper Court			WREXHAM	WREXHAM					
Chester CH4 9QU	J		SW PRELIMI	SW PRELIMINARY DESIGN					
Date 18/11/2022			Designed b						
File 7956 SW01 B	REV B (50%).MDX	Checked by	AJ			Diginada		
Micro Drainage			Network 20	20.1.3					
	Mar	hole Sched	ules for 795	56 SW01 REV	B SWS				
	Mai	lifete Sched		JO SWOI REV	D.5W5				
M Na	H Manhole me Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)			
	6 332172.07	1 352550.523	332172.071	352550.523	Required				
	7 332177.17	70 352560.261	332177.170	352560.261	Required				
	8 332185.71	9 352564.342	332185.719	352564.342	Required				
	9 332208.18	34 352566.652	332208.184	352566.652	Required				
	10 332242.72	3 352575.207	332242.723	352575.207	Required				
	11 332269.82	29 352580.456	332269.829	352580.456	Required	_			
	12 332281.91	6 352578.994	332281.916	352578.994	Required				
	13 332288.75	352572.269	332288.758	352572.269	Required				
	14 332293.41	7 352549.476	332293.417	352549.476	Required	$\frac{1}{I}$			
	15 332235.86	50 352522.903	332235.860	352522.903	Required	Ĭ			
	16 332256.34	4 352526.533	332256.344	352526.533	Required				
	17 332296.53	31 352530.109	332296.531	352530.109	Required				
	18 332359.54	13 352533.499	332359.543	352533.499	Required				
	19 332356.59	96 352579.075	332356.596	352579.075	Required				
	20 332366.65	50 352578.154	332366.650	352578.154	Required	1			
	21 332379.90)1 352532.591	332379.901	352532.591	Required				
	22 332386.75	7 352527.234	332386.777	352527.234	Required				

©1982-2020 Innovyze

Coopers		Page 5
Park House	MOLD ROAD	
Sandpiper Court	WREXHAM	
Chester CH4 9QU	SW PRELIMINARY DESIGN	Micco
Date 18/11/2022	Designed by PW	Desinado
File 7956 SW01 REV B (50%).MDX	Checked by AJ	Diamacje
Micro Drainage	Network 2020.1.3	
Manhole Sch	edules for 7956 SW01 REV B.SWS	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
23	332395.762	352528.145			No Entry	

Coopers		Page 6
Park House	MOLD ROAD	
Sandpiper Court	WREXHAM	
Chester CH4 9QU	SW PRELIMINARY DESIGN	Micro
Date 18/11/2022	Designed by PW	Dcainago
File 7956 SW01 REV B (50%).MDX	Checked by AJ	Diamaye
Micro Drainage	Network 2020.1.3	

PIPELINE SCHEDULES for 7956 SW01 REV B.SWS

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	225	1	91.948	90.497	1.226	Open Manhole	1500
1.001	0	225	2	90.655	89.133	1.297	Open Manhole	1500
2.000	0	300	3	89.756	87.823	1.633	Open Manhole	1500
1.002	0	375	4	89.981	87.672	1.934	Open Manhole	1800
1.003	0	375	5	90.195	87.572	2.248	Open Manhole	1500
1.004	0	375	б	90.513	87.463	2.675	Open Manhole	1500
1.005	0	375	7	90.433	87.417	2.641	Open Manhole	1500
1.006	0	375	8	90.144	87.385	2.384	Open Manhole	1500
1.007	0	375	9	89.240	87.310	1.555	Open Manhole	1500
1.008	0	375	10	88.584	87.009	1.200	Open Manhole	1500
1.009	0	450	11	88.844	86.111	2.283	Open Manhole	1500
1.010	0	450	12	88.510	85.830	2.230	Open Manhole	1800
1.011	0	525	13	88.062	85.731	1.806	Open Manhole	1800
1.012	0	525	14	86.937	85.287	1.125	Open Manhole	1800
3.000	0	225	15	87.472	85.833	1.414	Open Manhole	1500
3.001	0	300	16	87.154	85.636	1.218	Open Manhole	1500
1.013	0	525	17	86.872	85.163	1.184	Open Manhole	1800
1.014	0	600	18	86.891	84.930	1.361	Open Manhole	1800
1.015	0	600	19	86.681	84.816	1.265	Open Manhole	1800
1.016	0	600	20	86.600	84.616	1.384	Open Manhole	1800

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	31.810	23.3	2	90.655	89.133	1.297	Open Manhole	1500
1.001	20.535	15.7	4	89.981	87.822	1.934	Open Manhole	1800
2.000	18.270	240.4	4	89.981	87.747	1.934	Open Manhole	1800
1.002	16.957	169.6	5	90.195	87.572	2.248	Open Manhole	1500
1.003	26.052	239.0	б	90.513	87.463	2.675	Open Manhole	1500
1.004	10.993	239.0	7	90.433	87.417	2.641	Open Manhole	1500
1.005	9.473	296.0	8	90.144	87.385	2.384	Open Manhole	1500
1.006	22.584	301.1	9	89.240	87.310	1.555	Open Manhole	1500
1.007	35.583	118.2	10	88.584	87.009	1.200	Open Manhole	1500
1.008	27.610	33.5	11	88.844	86.186	2.283	Open Manhole	1500
1.009	12.175	43.3	12	88.510	85.830	2.230	Open Manhole	1800
1.010	9.593	399.7	13	88.062	85.806	1.806	Open Manhole	1800
1.011	23.264	52.4	14	86.937	85.287	1.125	Open Manhole	1800
1.012	19.616	158.2	17	86.872	85.163	1.184	Open Manhole	1800
2 000	20 002	170 5	10	07 154	05 511	1 010		1 - 0 0
3.000	20.803	1/0.5	10	87.154	85./11	1.218	Open Manhole	1500
3.001	40.346	162.7	17	86.872	85.388	1.184	Open Manhole	1800
1.013	63.103	399.4	18	86.891	85.005	1.361	Open Manhole	1800
1.014	45.670	400.6	19	86.681	84.816	1.265	Open Manhole	1800
1.015	10.095	403.8	20	86.600	84.791	1.209	Open Manhole	1800
1.016	47.451	398.7	21	86.600	84.497	1.503	Open Manhole	1800
				©1982	-2020 I	nnovyze	2	

Coopers		Page 7
Park House	MOLD ROAD	
Sandpiper Court	WREXHAM	
Chester CH4 9QU	SW PRELIMINARY DESIGN	Micco
Date 18/11/2022	Designed by PW	
File 7956 SW01 REV B (50%).MDX	Checked by AJ	Digiliada
Micro Drainage	Network 2020.1.3	
PIPELINE SCHED	ULES for 7956 SW01 REV B.SWS	
<u>U</u>	pstream Manhole	
PN Hyd Diam MH C.Level	l I.Level D.Depth MH MH DIAM., L*N	ন
Sect (mm) Name (m)	(m) (m) Connection (mm)	
1.017 o 600 21 86.600 1.018 o 225 22 86.400	0 84.497 1.503 Open Manhole 1800 0 84.475 1.700 Open Manhole 2400	2 2
Dor	wnstream Manhole	
PN Length Slope MH C.Lev	el I.Level D.Depth MH MH DIAM., L	*W
(m) (1:X) Name (m)	(m) (m) Connection (mm)	
1.017 8.717 396.2 22 86.4 1.018 9.031 170.0 23 85.5	00 84.475 1.325 Open Manhole 24 00 84.422 0.853 Open Manhole 24	00
Free Flowing Outfal	l Details for 7956 SW01 REV B SWS	
	Decarrs for 7550 biol Rev D.bib	
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm)	
	(m)	
1.018 23	85.500 84.422 0.000 0 0	
Simulation Crit	eria for 7956 SW01 REV B.SWS	
Volumetric Runoff Coeff	0.750 Additional Flow - % of Total Flow 0	0.000
Areal Reduction Factor	1.000 MADD Factor * 10m ³ /ha Storage 2	2.000
Hot Start (mins)	0 Inlet Coefficient 0	0.800
Hot Start Level (mm) Manhole Headloss Coeff (Global)	0 Flow per Person per Day (l/per/day) 0 0 500 Bun Time (mins)	60
Foul Sewage per hectare (1/s)	0.000 Output Interval (mins)	1
Number of Input Hydrographs 0 Number Number of Online Controls 1 Number of	r of Offline Controls 0 Number of Time/Area of Storage Structures 1 Number of Real Time	Diagrams 0 Controls 0
Cometho	tic Painfall Details	
Synchie	Cite Mainitati Decalib	
Rainfall Model	FSR Profile Type Summer	
Region Engl	and and Wales Cv (Winter) 0.840	
M5-60 (mm)	18.000 Storm Duration (mins) 30	
Ratio R	0.309	

Coopers					Page	e 8
Park House	MOLD ROF	AD				
Sandpiper Court	WREXHAM	WREXHAM				-
Chester CH4 9QU	SW PRELI	SW PRELIMINARY DESIGN				
Date 18/11/2022	Designed	l by PW				
File 7956 SW01 REV B (50%).MDX	Checked	Checked by AJ				amaye
Micro Drainage	Network	2020.1.3				
<u>Online Contro</u> Hydro-Brake® Optimum Manho	ols for 7	956 SW01 REV B.SWS DS/PN: 1.018, Volume	(m³)	: 1	0.6	
			1 0			
Uni	t Referenc	e MD-SHE-0169-1570-1650-	1570 650			
Design	I Flow (l/s)	15.7			
	Flush-Flo	™ Calcul	ated			
	Objectiv	e Minimise upstream sto	rage			
	Applicatio	n Sur	face			
Sum	ıp Availabl	e	Yes			
Di	.ameter (mm)	169			
Inver	t Level (m	.) 84	.475			
Minimum Outlet Pipe Di	ameter (mm)	225			
Suggested Mainore Di	ameter (mm	.)	1200			
Control Points Head (m) Flo	ow (l/s)	Control Points	Head	(m)	Flow	(1/s)
Design Point (Calculated) 1.650	15.7	Kick-Flo®	1.	034		12.6
Flush-Flo™ 0.483	15.6 MG	ean Flow over Head Range		-		13.6
The hydrological calculations have been b Brake® Optimum as specified. Should anot Optimum® be utilised then these storage r	based on th ther type o couting cal	e Head/Discharge relation f control device other t culations will be invalion	nship han a dated	for Hydr	the H co-Bra	iydro- lke

Depth (m)	Flow (l/s)						
0.100	6.0	1.200	13.5	3.000	20.8	7.000	31.3
0.200	13.8	1.400	14.5	3.500	22.4	7.500	32.3
0.300	15.0	1.600	15.4	4.000	23.9	8.000	33.4
0.400	15.5	1.800	16.3	4.500	25.3	8.500	34.4
0.500	15.6	2.000	17.2	5.000	26.6	9.000	35.3
0.600	15.5	2.200	18.0	5.500	27.9	9.500	36.3
0.800	14.9	2.400	18.7	6.000	29.0		
1.000	13.1	2.600	19.5	6.500	30.2		

Coopers						
Park House		N	IOLD ROAD			
Sandpiper Court		V	IREXHAM			
Chester CH4 90U		2	SW PRELIMIN	ARY DESIGN		Micco
		Т	esigned by	PW		
	0 9. \ N		besigned by	1 M		Drainage
FILE /956 SWUL REV B (5						
Micro Drainage		1	letwork 202	0.1.3		
		Volume	Summary (S	Static)		
	Len	gth Calculat	tions based c	on Centre-Cen	tre	
				Storage		
Pipe	USMH	Manhole	Pipe	Structure	Total	
Number	Name	Volume (m ³)	Volume (m³)	Volume (m ³)	Volume (m ³)	
1.000	1	2.564	1.265	0.000	3.829	
1.001	2	2.690	0.816	0.000	3.506	
2.000	3	3.416	1.291	0.000	4.707	
1.002	4	5.876	1.873	0.000	7.749	
1.003	5	4.635	2.877	0.000	7.513	
1.004	б	5.390	1.214	0.000	6.604	
1.005	7	5.330	1.046	0.000	6.376	
1.006	8	4.876	2.494	0.000	7.370	
1.007	9	3.411	3.930	0.000	7.341	
1.008	10	2.783	3.049	0.000	5.833	
1.009	11	4.830	1.936	0.000	6.766	
1.010	12	6.820	1.526	0.000	8.345	
1.011	13	5.932	5.036	0.000	10.968	
1.012	14	4.199	4.246	0.000	8.445	
3.000	15	2.896	0.827	0.000	3.723	
3.001	16	2.683	2.852	0.000	5.534	
1.013	17	4.349	13.660	0.000	18.009	
1.014	18	4.990	12.913	0.000	17.903	
1.015	19	4.746	2.854	0.000	7.600	
1.016	20	5.049	13.416	0.000	18.465	
1.017	21	5.351	2.465	0.000	7.816	
1.018	22	8.708	0.359	1223.388	1232.456	
Total		101.522	81.948	1223.388	1406.858	

									Pa	ge 10
Park Hous	е				MOLD ROAD					
Sandpiper	Cour	t			WREXHAM					
Chester	СН4 9	QU			SW PR	ELIMIN	ARY DESIGN		N	/icco
Date 18/1	1/202	2			Desig	ned by	PW			
File 7956	SW01	REV B (5	0%).MD2	х	Check	ed by	AJ			namaye
Micro Dra	inage				Netwo	rk 202	0.1.3			
<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 7956</u> <u>SW01 REV B.SWS</u>										
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MaDD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 18.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.315 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status ON Inertia Status ON Inertia Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 1, 30, 100										
Climate Change (%) 0, 0, 50								1,	30, 100	
		Climate (Change (8) 8)				1,	30, 100 0, 0, 50	Water
	US/MH	Climate (Change (Return	<pre>%)</pre> Climate	Firs	t (X)	First (Y)	l, First (Z)	30, 100 0, 0, 50 Overflow	Water Level
PN	US/MH Name	Climate (Return Period	<pre>S) %) Climate Change</pre>	Firs ¹ Surcl	t (X) harge	First (Y) Flood	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m)
PN 1.000	US/MH Name 1	Climate (Storm 15 Winter	Return Period	Climate Change	Firs [;] Surcl	t (X) harge	First (Y) Flood	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544
PN 1.000 1.001	US/MH Name 1 2	Climate (Storm 15 Winter 15 Winter	Return Period	<pre>S) %) Climate Change +0% +0%</pre>	Firs: Surcl 100/15	t (X) harge Summer	First (Y) Flood	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191
PN 1.000 1.001 2.000	US/MH Name 1 2 3	Storm 15 Winter 15 Winter 15 Winter	Return Period 1 1	S) %) Climate Change +0% +0% +0%	Firs: Surcl 100/15 30/15	t (X) harge Summer Summer	First (Y) Flood 100/15 Summer	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877
PN 1.000 1.001 2.000 1.002	US/MH Name 1 2 3 4	Storm 15 Winter 15 Winter 15 Winter 15 Winter	Return Period 1 1 1	Climate Change +0% +0% +0% +0%	First Surcl 100/15 30/15 30/15	t (X) harge Summer Summer Summer	First (Y) Flood 100/15 Summer	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799
PN 1.000 1.001 2.000 1.002 1.003 1.004	US/MH Name 1 2 3 4 5 6	Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Return Period 1 1 1 1	Climate Change +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer Summer	First (Y) Flood 100/15 Summer	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005	US/MH Name 1 2 3 4 5 6 7	Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Return Period 1 1 1 1 1 1	<pre>S) %) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%</pre>	Firs: Surcl 100/15 30/15 30/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006	US/MH Name 1 2 3 4 5 6 7 8	Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	First Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007	US/MH Name 1 2 3 4 5 6 7 8 9	Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surch 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer Summer Winter	First (Y) Flood 100/15 Summer	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008	US/MH Name 1 2 3 4 5 6 7 8 9 10	Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	First Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15	t (X) harge Summer Summer Summer Summer Summer Winter Summer	First (Y) Flood 100/15 Summer	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010	US/MH Name 1 2 3 4 5 6 7 8 9 10 11	Climate (Climate (Storm 5 Winter 5 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer Winter Winter Summer	First (Y) Flood 100/15 Summer	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011	US/MH Name 1 2 3 4 5 6 7 7 8 9 10 11 12 13	Climate (Climate (Storm 5 Winter 5 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer Winter Summer Winter Summer Summer	First (Y) Flood	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012	US/MH Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15	t (X) harge Summer Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000	US/MH Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Climate O Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S) %) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15	t (X) harge Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511 85.912
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001	US/MH Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S) %) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	First Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15	t (X) harge Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511 85.912 85.732
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.010 1.011 1.012 3.000 3.001 1.013 1.014	US/MH Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1	Climate C Climate C Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511 85.912 85.732 85.444 85.244
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015	US/MH Name 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19	Climate (Climate (Storm 5 Winter 5 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 100/15 100/15 100/15 30/15 100/15 30/15	t (X) harge Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511 85.912 85.732 85.444 85.244 85.244
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015 1.016	US/MH Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15 30/15 100/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511 85.912 85.732 85.444 85.244 85.244 85.171 84.926
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015 1.016 1.017	US/MH Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15 30/15 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511 85.912 85.732 85.444 85.244 85.244 85.244 85.171 84.926 84.851
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015 1.016 1.017 1.018	US/MH Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S) %) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15 30/15 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer Summer Summer Summer Summer Winter Summer Winter Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	l, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511 85.912 85.732 85.444 85.244 85.244 85.244 85.171 84.926 84.851 84.792
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015 1.016 1.017 1.018	US/MH Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Storm 15 Winter 15 Winter 240 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	<pre>Firs* Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15 100/15 30/15 100/15 30/15 100/15 3</pre>	t (X) harge Summer	First (Y) Flood	1, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511 85.912 85.732 85.444 85.244 85.244 85.244 85.244 85.241 84.792
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015 1.016 1.017 1.018	US/MH Name 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Storm 15 Winter 15 Winter	Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 100/15 30/15 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	1, First (Z) Overflow	30, 100 0, 0, 50 Overflow Act.	Water Level (m) 90.544 89.191 87.877 87.799 87.738 87.672 87.644 87.607 87.482 87.137 86.274 86.174 85.885 85.511 85.912 85.732 85.444 85.271 84.792

Coopers		Page 11
Park House	MOLD ROAD	
Sandpiper Court	WREXHAM	
Chester CH4 9QU	SW PRELIMINARY DESIGN	Mirro
Date 18/11/2022	Designed by PW	Desinado
File 7956 SW01 REV B (50%).MDX	Checked by AJ	Diamaye
Micro Drainage	Network 2020.1.3	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 7956</u> <u>SW01 REV B.SWS</u>

	IIS/MH	Surcharged Depth	Flooded	Flow /	Overflow	Half Drain Time	Pipe Flow		I.evel
PN	Name	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	-0.178	0.000	0.10			9.7	OK	
1.001	2	-0.167	0.000	0.15			17.8	OK	
2.000	3	-0.246	0.000	0.07			4.5	OK	4
1.002	4	-0.248	0.000	0.25			30.7	OK	
1.003	5	-0.209	0.000	0.38			42.1	OK	
1.004	б	-0.166	0.000	0.51			49.5	OK	
1.005	7	-0.148	0.000	0.68			57.0	OK	
1.006	8	-0.153	0.000	0.65			63.6	OK	
1.007	9	-0.203	0.000	0.43			70.6	OK	
1.008	10	-0.247	0.000	0.25			77.2	OK	
1.009	11	-0.287	0.000	0.28			83.8	OK	
1.010	12	-0.106	0.000	0.94			89.9	OK	
1.011	13	-0.371	0.000	0.19			96.0	OK	
1.012	14	-0.301	0.000	0.38			101.8	OK	1
3.000	15	-0.146	0.000	0.27			9.6	OK	
3.001	16	-0.204	0.000	0.22			17.8	OK	
1.013	17	-0.244	0.000	0.54			119.9	OK	
1.014	18	-0.286	0.000	0.40			119.0	OK	
1.015	19	-0.245	0.000	0.66			121.6	OK	
1.016	20	-0.290	0.000	0.40			120.1	OK	
1.017	21	-0.246	0.000	0.66			118.4	OK	
1.018	22	0.092	0.000	0.47			15.1	SURCHARGED	

Coopers										Pa	age 12	
Park House				MOLD ROAD						a 6		
Sandpiper Co	ourt				WREXHAM							
Chester CH4	1 90	U			SW PR	ELIMIN		Micco				
$D_{2} + 0.18/11/2$	2022	-			Degia	ned by		VILLU				
Date 10/11/2	3022 701				Charle	ad ba		Drainage				
F11e /956 SW	NOT .	REV B (5	0∛).MD.	X	Checked by AJ							
Micro Draina	age				Network 2020.1.3							
<u>30 year Ret</u>	urn	Period S	Summary	y of Cr	itical SW01 R	Resul EV B.S	ts by WS	Maximu	m Level	(Rank 1) for 7956	
Mar F Number of Number	hholf Foul f Ing of C R	Areal R4 Hot S Headloss Sewage pe: Dut Hydrogn Daline Cont ainfall Mo Reg Margin for	eduction ot Start tart Lev Coeff (r hectar raphs 0 trols 1 del tion Eng c Flood	<u>Si</u> h Factor (mins) vel (mm) (Global) re (1/s) Number Number <u>Synth</u> land and Risk War Analysis	imulation 1.000 0 0.500 0.000 c of Off of Stora FSR Wales ning (m Timest TS Stat	on Crita Addit Flow pe fline Ca age Stru <u>infall</u> M5-60 (Rati m) ep 2.5 us	eria ional FI ADD Fact r Persor ontrols uctures <u>Details</u> mm) 18. o R 0. Second	low - % cor * 10 Inlet h per Da 0 Numbe 1 Numbe 0000 Cv 315 Cv Incremen	of Total F m³/ha Stor Coeffieci y (l/per/c er of Time, er of Real (Summer) C (Winter) C 30 nt (Extend	Flow 0.00 cage 2.00 ient 0.80 day) 0.00 /Area Dia Time Con 0.750 0.840 0.0 ed) OFF	0 0 0 grams 0 trols 0	
				D	VD Stat	us				ON		
				Inert	ia Stat	us				ON		
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 50												
											Water	
US/	MH	0 b c c c c c c c c c c	Return	Climate	Firs	t (X)	First	t (Y)	First (Z)	Overflow	v Level	
PN NAI	me	Storm	Period	Change	Sure	narge	E.T.O	boa	Overilow	ACT.	(m)	
1.000	1	15 Winter	30	+0%							90.571	
1.001	2	15 Winter	30	+0%	100/15	Summer					89.233	
2.000	3	15 Winter	30	+0%	30/15	Summer	100/15	Summer			88.349	
1.002	4	15 Winter	30	+0%	30/15	Summer					88.339	
1.003	5	15 Winter	30	+0%	30/15	Summer					88.236	
1.004	6	15 Winter	30	+0%	30/15	Summer					88.141	
1.005	7	15 Winter	30	+0%	30/15	Summer					88.039	
1.006	8	15 Winter	30	+0%	30/15	Summer					87.902	
1.007	9	15 Winter	30	+0%	30/15	Winter					87.701	
1.008	10	15 Winter	30	+0%	100/15	Summer					87.225	
1.009	11	15 Winter	30	+0%	30/15	Winter					86.575	
1.010	12	15 Winter	30	+0%	30/15	Summer					86.390	
1.011	13	15 Winter	30	+0%	100/15	Summer					86.019	
1.012	14	15 Winter	30	+0%	30/15	Summer	100/15	Winter			85.938	
3.000	15	15 Winter	30	+0%	100/15	Summer					85.967	
3.001	16	15 Winter	30	+0%	100/15	Summer					85.881	
1.013	17	15 Winter	30	+0%	30/15	Summer					85.824	
1.014	18	15 Winter	30	+0%	30/15	Winter					85.536	
1.015	19	30 Winter	30	+0%	100/15	Summer					85.416	
1.016	20 2	40 Winter	30	+0%	30/15	Winter					85.258	
1.017	21 2	40 Winter	30	+0%	30/60	Winter					85.254	
1.018	21 Z				1/60	G						
	22 2	40 Winter	30	+0%	1/00	Summer					85.252	
	22 2	240 Winter	30	+0%	1/00	Summer					85.252	
	22 2	240 Winter	30	+0%	1/00	Summer					85.252	
	22 2	240 Winter	30	+0% ©19	1/80	20 Inno	ovyze				85.252	

Coopers					
Park House	MOLD ROAD				
Sandpiper Court	WREXHAM				
Chester CH4 9QU	SW PRELIMINARY DESIGN	Mirro			
Date 18/11/2022	Designed by PW	Dcainago			
File 7956 SW01 REV B (50%).MDX	Checked by AJ	Diamage			
Micro Drainage	Network 2020.1.3				

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 7956 SW01 REV B.SWS

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	-0.151	0.000	0.23			23.7	OK	
1.001	2	-0.125	0.000	0.41			48.7	OK	
2.000	3	0.226	0.000	0.17			10.6	SURCHARGED	4
1.002	4	0.292	0.000	0.60			74.4	SURCHARGED	
1.003	5	0.289	0.000	0.94			105.1	SURCHARGED	
1.004	6	0.303	0.000	1.28			124.3	SURCHARGED	
1.005	7	0.247	0.000	1.70			142.8	SURCHARGED	
1.006	8	0.142	0.000	1.64			160.2	SURCHARGED	
1.007	9	0.016	0.000	1.04			171.7	SURCHARGED	
1.008	10	-0.159	0.000	0.61			186.3	OK	
1.009	11	0.014	0.000	0.68			202.7	SURCHARGED	
1.010	12	0.110	0.000	2.29			219.4	SURCHARGED	
1.011	13	-0.237	0.000	0.46			235.5	OK	
1.012	14	0.126	0.000	0.93			250.0	SURCHARGED	1
3.000	15	-0.091	0.000	0.64			23.2	OK	
3.001	16	-0.055	0.000	0.57			45.7	OK	
1.013	17	0.136	0.000	1.32			290.5	SURCHARGED	
1.014	18	0.006	0.000	0.99			294.1	SURCHARGED	
1.015	19	0.000	0.000	1.54			286.5	OK	
1.016	20	0.042	0.000	0.33			99.5	SURCHARGED	
1.017	21	0.157	0.000	0.53			95.1	SURCHARGED	
1.018	22	0.552	0.000	0.48			15.6	SURCHARGED	

Park Hous										Pa	age 14	
Park House						MOLD ROAD						
Sandpiper	Cour	t				WREXH	AM					
Chester	СН4 9	OU				SW PR	ET.TMTN		lices			
Date 18/1	1/202	<u>ຂ</u> ິ ງ				Degia	ned by]	VIICIO			
	1/202 0W01	ے ہے ہے				Charle	ad ba				Drainage	
File /956	SWUI	REV	/ В (5)	J≷).MD.	X	Cneck	ea by	AJ				
Micro Dra	inage					Network 2020.1.3						
<u>100 year</u>	Retur	n P	eriod	Summar	y of Cr	itical SW01 R	. Resul	lts by Maxim <u>WS</u>	um Level	(Rank 1) for 7956	
Numbe: Numl	Manho Fou r of In ber of	le He l Sev nput Onli	Areal Re Hot St eadloss wage per Hydrogr	eduction ot Start tart Lev Coeff r hectan raphs 0 trols 1	<u>S:</u> n Factor t (mins) yel (mm) (Global) (Global) re (1/s) Number Number o <u>Synth</u>	imulation 1.000 0 0.500 0.000 c of Off of Stora etic Ra	Dn Crite Addit M Flow pe Eline Co age Stru infall	eria ional Flow - % ADD Factor * 1 Inle r Person per Da ontrols 0 Numb actures 1 Numb Details	of Total H Om³/ha Stor t Coeffiec: ay (l/per/d er of Time er of Real	Flow 0.00 rage 2.00 ient 0.80 day) 0.00 /Area Diag Time Con	0 0 0 grams 0 trols 0	
		Rain	fall Mo	del		FSR	M5-60 (mm) 18.000 Cv	(Summer) (0.750		
			Reg	ion Eng	land and	Wales	Rati	o R 0.315 Cv	(Winter) (0.840		
		Mar	gin for	Flood	Risk War Analysis D D Inert	ning (m Timest TS Stat VD Stat ia Stat	m) ep 2.5 us us us	Second Increme	30 nt (Extend	0.0 ed) OFF ON ON		
	Retu	Du irn I Cl	I aration(Period(s .imate (Profile((s) (mir s) (year Change (s) as) s) %)	15, 30,	60, 12	0, 180, 240, 3	Summer an 60, 480, 6 9 1,	d Winter 00, 720, 60, 1440 30, 100 0, 0, 50		
	US/MH			Return	Climate	Firs	t (X)	First (Y)	First (Z)	Overflow	Water	
PN	US/MH Name	s	torm	Return Period	Climate Change	Firs Surc	t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water v Level (m)	
PN	US/MH Name	s	torm	Return Period	Climate Change	Firs Surc	t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water V Level (m)	
PN 1.000	US/MH Name	s 15	torm Winter	Return Period	Climate Change +50%	Firs Surc	t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604	
PN 1.000 1.001	US/MH Name	s 15 15	torm Winter Winter	Return Period 100 100	Climate Change +50% +50%	Firs Surc 100/15	t (X) harge Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water 7 Level (m) 90.604 90.345 80.767	
PN 1.000 1.001 2.000 1.002	US/MH Name 1 2 3 4	S 15 15 15 15	torm Winter Winter Winter	Return Period 100 100 100	Climate Change +50% +50% +50%	Firs Surc 100/15 30/15 30/15	t (X) harge Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water / Level (m) 90.604 90.345 89.767 89.920	
PN 1.000 1.001 2.000 1.002 1.003	US/MH Name 1 2 3 4 5	s 15 15 15 15	torm Winter Winter Winter Winter	Return Period 100 100 100	Climate Change +50% +50% +50% +50%	Firs Surc 100/15 30/15 30/15	t (X) harge Summer Summer	First (Y) Flood 100/15 Summer	First (Z) Overflow	Overflow Act.	Water / Level (m) 90.604 90.345 89.767 89.920 89.907	
PN 1.000 1.001 2.000 1.002 1.003 1.004	US/MH Name 1 2 3 4 5 6	s 15 15 15 15 15	torm Winter Winter Winter Winter Winter	Return Period 100 100 100 100	Climate Change +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15	t (X) harge Summer Summer Summer	First (Y) Flood 100/15 Summer	First (Z) Overflow	Overflow Act.	Water / Level (m) 90.604 90.345 89.767 89.920 89.907 89.792	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005	US/MH Name 1 2 3 4 5 6 7	s 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100	Climate Change +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15	summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.907 89.792 89.623	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.005	US/MH Name 1 2 3 4 5 6 7 8	s 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100	Climate Change +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15	summer Summer Summer Summer Summer Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.907 89.792 89.623 89.406	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007	US/MH Name 1 2 3 4 5 6 7 7 8 9	S 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100	Climate Change +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15	summer Summer Summer Summer Summer Summer Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008	US/MH Name 1 2 3 4 5 6 7 7 8 9 10	s 15 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15	summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009	US/MH Name 1 2 3 4 5 6 7 7 8 9 10	s 15 15 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	summer Summer Summer Summer Summer Summer Winter Summer Winter	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010	US/MH Name 1 2 3 4 5 6 6 7 8 8 9 10 11	s 15 15 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	summer Summer Summer Summer Summer Summer Winter Summer Winter Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011	US/MH Name 1 2 3 4 5 6 7 8 9 10 11 12 13	S 15 15 15 15 15 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	summer Summer Summer Summer Summer Summer Winter Summer Winter Summer Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012	US/MH Name 1 2 3 4 5 6 6 7 8 8 9 10 11 12 13 14	s 15 15 15 15 15 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	summer Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000	US/MH Name 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15	s 15 15 15 15 15 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15	summer Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937 86.940	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001	US/MH Name 1 2 3 4 5 6 7 7 8 9 0 10 11 12 13 14 15 16	s 15 15 15 15 15 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15	summer Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937 86.940 86.849	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013	US/MH Name 1 2 3 4 5 6 7 7 8 9 0 0 11 12 13 14 15 16 17	s 15 15 15 15 15 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 100/15 100/15 30/15	summer Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937 86.940 86.849 86.727	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014	US/MH Name 1 2 3 4 5 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18	s 15 15 15 15 15 15 15 15 15 15 15 15 15	torm Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 30/15 30/15	summer Summer Summer Summer Summer Summer Winter Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937 86.940 86.849 86.727 86.082	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015	US/MH Name 1 2 3 4 5 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19	s 15 15 15 15 15 15 15 15 15 15 15 15 15	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 100/15 30/15 100/15 30/15	summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937 86.940 86.849 86.727 86.082 86.042	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015 1.016	US/MH Name 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 5 16 6 17 7 8 9 9 10 0	s 15 15 15 15 15 15 15 15 15 15 15 15 15	torm Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15 30/15 100/15 30/15 100/15 30/15	summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937 86.940 86.849 86.727 86.082 86.042 86.040	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015 1.016 1.017	US/MH Name 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 5 6 6 77 8 9 9 10 11 22 3 3 4 9 9 10 20 21	s 15 15 15 15 15 15 15 15 15 15 15 15 15	torm Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15	summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937 86.940 86.849 86.727 86.082 86.042 86.040 86.036	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015 1.016 1.017 1.018	US/MH Name 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	s 15 15 15 15 15 15 15 15 15 15 15 15 15	Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs: Surcl 30/15 30/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 30/15 100/15 30/15 100/15 30/15 30/15 30/15 30/15 30/15 30/15	summer Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937 86.940 86.849 86.727 86.082 86.042 86.042 86.040 86.036 86.034	
PN 1.000 1.001 2.000 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012 3.000 3.001 1.013 1.014 1.015 1.016 1.017 1.018	US/MH Name 1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 6 17 18 19 20 21 22	S 15 15 15 15 15 15 15 15 15 15 15 15 15	Winter Winter	Return Period 100 100 100 100 100 100 100 100 100 10	Climate Change +50% +50% +50% +50% +50% +50% +50% +50%	Firs Surcl 100/15 30/15 30/15 30/15 30/15 30/15 30/15 100/15 100/15 100/15 30/15 100/15 30/15 30/15 30/15 100/15 30/15 30/15 30/15	summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	First (Y) Flood 100/15 Summer 100/15 Winter	First (Z) Overflow	Overflow Act.	Water Level (m) 90.604 90.345 89.767 89.920 89.907 89.792 89.623 89.406 89.079 88.435 87.786 87.507 87.173 86.937 86.940 86.849 86.727 86.082 86.042 86.042 86.040 86.036 86.034	

Coopers					
Park House	MOLD ROAD				
Sandpiper Court	WREXHAM				
Chester CH4 9QU	SW PRELIMINARY DESIGN	Mirro			
Date 18/11/2022	Designed by PW	Dcainago			
File 7956 SW01 REV B (50%).MDX	Checked by AJ	Diamage			
Micro Drainage	Network 2020.1.3				

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 7956 SW01 REV B.SWS

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	-0.118	0.000	0.45			45.8	OK	
1.001	2	0.987	0.000	0.62			73.9	SURCHARGED	
2.000	3	1.644	10.768	1.18			72.4	FLOOD	4
1.002	4	1.873	0.000	0.96			119.1	FLOOD RISK	
1.003	5	1.960	0.000	1.27			142.9	FLOOD RISK	
1.004	6	1.954	0.000	1.75			170.2	SURCHARGED	
1.005	7	1.831	0.000	2.38			200.5	SURCHARGED	
1.006	8	1.646	0.000	2.30			225.1	SURCHARGED	
1.007	9	1.394	0.000	1.48			244.9	FLOOD RISK	
1.008	10	1.051	0.000	0.89			271.0	FLOOD RISK	
1.009	11	1.225	0.000	1.00			298.2	SURCHARGED	
1.010	12	1.227	0.000	3.37			323.7	SURCHARGED	
1.011	13	0.917	0.000	0.68			348.2	SURCHARGED	
1.012	14	1.125	0.285	1.37			369.4	FLOOD	1
3.000	15	0.882	0.000	0.90			32.6	SURCHARGED	
3.001	16	0.913	0.000	0.79			63.9	SURCHARGED	
1.013	17	1.039	0.000	2.02			444.3	FLOOD RISK	
1.014	18	0.552	0.000	1.55			459.5	SURCHARGED	
1.015	19	0.626	0.000	0.63			117.5	SURCHARGED	
1.016	20	0.824	0.000	0.39			116.9	SURCHARGED	
1.017	21	0.939	0.000	0.65			116.5	SURCHARGED	
1.018	22	1.334	0.000	0.48			15.6	SURCHARGED	