

DRAINAGE STRATEGY

PROPOSED SECOND PHASE OF THE RESIDENTIAL DEVELOPMENT AT MELIDEN ROAD, DYSERTH

APRIL 2020 Suitability S1 Revision P01

Prepared on Behalf of:

Macbryde Homes Ltd

28 St Asaph Business Park, 7 Ffordd Richard Davies, Saint Asaph, LL17 0LJ

By:

Cadarn Consulting Engineers Ltd.

Yr Hen Ysgol Llanddeusant Anglesey LL65 4AD

SUITABILITY	REV	DATE	DESCRIPTION	Org.	Chk'd	App'd
S1	P01	02.12.2019	First Issue.			

CONTENTS

PAGES

1.0	Intr	oduction5
	1.1	Project Background
	1.2	Scope of Proposed Drainage Strategy5
	1.3	Proposed Development
2.0	Exis	ting Site Baseline6
	2.1	Site Boundaries
	2.2	Existing Hydrology7
	2.3	Existing Watercourses7
	2.4	Existing Nearby Drainage
3.0	Desi	gn Criteria9
4.0	Surf	face Water & Foul Drainage Strategy10
	4.1	Guiding Principles10
	4.2	Method of discharge10
	4.2	Climate Change11
5.0	Surf	face Water Drainage Design12
	5.1	Design Philosophy
	5.2	Method of Storage
	5.3	Drainage System Maintenance16
6.0	Fou	l Drainage Design19
	6.1	Method of Discharge
7.0	Con	clusion & Recommendations20

APPENDICES

- A Site Location Plan
- B Existing & Proposed Surface Water Above Ground Flood Routing
- C NRW Flood Advice Map
- D Dŵr Cymru / Welsh Water Apparatus Map
- E PHASE 1 Section 104 Drainage Layout
- F Groundsolve Ltd Porosity Report
- G 'Causeway Flow' Hydraulic Modelling Output
- H Existing & Proposed Site Area Layout
- I Proposed Section 104 Drainage Layout
- J Proposed Soakaway Calculations

1.0 Introduction

1.1 Project Background

- 1.1.1 Cadarn Consulting Engineers Ltd have been appointed by Macbryde Homes Ltd to provide a drainage strategy, for both surface water and foul, for the proposed second phase to their Cysgod Y Graig residential development located off the A547, Dyserth, Rhyl, LL18 6BP (National Grid Reference SJ 05318 79620). Refer to the drawing enclosed in Appendix A for the proposed site location plan.
- 1.1.2 Cadarn Consulting Engineers Ltd reserve the right to undertake further investigation into the adequacy of the proposed drainage strategy based on changes in regulations, if works on site have not commenced within twelve months of the issuing of this report.

1.2 Scope of Proposed Drainage Strategy

- 1.2.1 This report aims to provide a suitable drainage strategy for the discharge of surface water and foul effluent generated by the proposed development.
- 1.2.2 The purpose of the calculations and accompanying details enclosed within this report are to produce a drainage layout that complies with the relevant legislation of the Tan 15, CIRIA C753 '*The SuDS Manual*' and Approved Document H of the Building Regulations 2010.

1.3 Proposed Development

1.3.1 The proposal involves the construction of an additional 31 dwellings to the site, which already contains 63 dwellings which are currently being constructed as part of the phase 1 works. The second phase of the development is located in the adjoining land to the south of the existing site.

2.0 Existing Site Baseline

2.1 Site Boundaries

2.1.1 The proposed second phase of the development is to be located partly on an existing agricultural greenfield site, on the outskirts of the rural village of Dyserth and partly on an area of overgrown waste land. The Northern boundary of the site is bounded by the first phase of the development which is currently being constructed. As the development is on the outskirts of the village the western and South-western boundaries are formed by agricultural land, and the eastern and South-eastern boundary bounded partly by a play area but mostly by residential properties. The boundaries described above are illustrated within **Figure 1.**

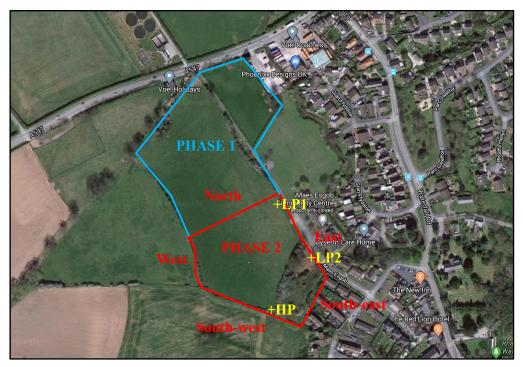


Figure 1. Proposal Site Boundaries

2.2 Existing Hydrology

- 2.2.1 The site is a steeply sloping site which generally falls towards the eastern boundary at a approximate gradient of 1:6. There is a high point at the boundary between the existing agricultural greenfield site and the overgrown waste land and therefore surface water which lands on the agricultural greenfield site falls slightly towards the North, and the overgrown waste land to the South East. The location of the high pints and low points are illustrated within **Figure 1**.
 - HP 52.320m A.O.D
 - LP1 36.280m A.O.D
 - LP2 36.000m A.O.D (approx.)
- 2.2.2 The above existing above ground flood routing is illustrated on the plan contained within **Appendix B**.

2.3 Existing Watercourses

- 2.3.1 The Glan Ffyddion is located approx. 55m West of the development at its closest running to the rear of Maes Esgob Community Centre. There are no land drainage ditches within the curtilage of the site and no evidence of any land drainage ditches historically.
- 2.3.2 The drainage strategy report of phase 1 of the development included an assessment into the risk of flooding from the watercourse as a small portion of the North Eastern corner adjacent to the A547 and the boundary car park flooded during the 1:1000 year return period with an 80% blockage at the culvert passing beneath the A547, however this does not need to be assessed within this report as no part of the phase 2 development floods during any modelled return period with blockages included, a copy of the NRW flood advice map for the area is contained within **Appendix C**.

2.4 Existing Nearby Drainage

- 2.4.1 The Dwr Cymru / Welsh Water (DCWW) apparatus map contained within Appendix D indicates there is a Ø 375mm combined public sewer located beneath the site adjacent to the South-eastern boundary running in a North-easterly direction, before increasing to a Ø 450mm, at the Eastern corner of the site, and again to a dual pipe network of Ø 600mm & Ø 225mm adjacent to the Eastern boundary running in a northerly direction to the sewerage treatment works located on the opposite site of the A547.
- 2.4.2 In addition to the public sewer network noted above, there is also a proposed foul sewer network accommodating the first phase of the development which has a an agreement under section 104 of the Waters Industries Act 1991 for the adoption of the network by the sewerage undertaker (DCWW), this drainage network is illustrated on the proposed section 104 drainage layout for the first phase of the development contained within **Appendix E**.

- Approved Document H, Building Regulations;
- BRE Digest 365;
- BS EN 752:2017;
- CIRIA C753 'The SuDS Manual' 2015;
- DEFRA / Environment Agency 'Preliminary Rainfall Runoff Management for Developments' Technical Report;
- Discharge Units from BS EN 12056: Part 2;
- Flood & Water Management Act 2010;
- Highways Act 1991;
- Institute of Hydrology Report (IHR) 124;
- Land Drainage Act 1991;
- Modified Rational Method;
- Sewers for Adoption 7th Edition;
- Statutory standards for sustainable drainage systems designing, constructing, operating and maintaining surface water drainage systems
- Technical Advice Note (TAN) 15: Development and Flood Risk;
- Wallingford Procedure;
- Water Industries Act 1991.

4.0 Surface Water & Foul Drainage Strategy

4.1 Guiding Principles

4.1.1 The disposal of surface water has been designed in strict accordance with the provision of TAN 15, the Flood and Water Management Act 2010 and other best practice documents, such as CIRIA C753 'SuDS Manual' 2015.

4.2 Method of discharge

- 4.2.1 In accordance with the SuDS Manual 2015, surface water should be managed and discharged from a new development in line with the following hierarchy:
 - Re-use of water;
 - Infiltration into ground;
 - Discharge to a water body;
 - Discharge to a surface water run-off drain;
 - Discharge to a combined surface water run-off and foul drain.
- 4.2.2 Due to the nature of the development, there is unlikely to be a requirement for the re-use of large volumes of grey water within the building and a rainwater harvesting system would be unfeasible.
- 3.1.1 Porosity tests for the first phase of the development were conducted by Groundsolve Ltd between the 9th and 11th of October 2017. The report concludes that the use of infiltration systems such as soakaways for the disposal of surface water run-off generated from the proposed development is suitable. a copy of this report is contained within Appendix F. Therefore, all surface water run-off for the first phase of the development discharged to ground at the natural infiltration rate within individual soakaways for each plot and a separate system for the highway network.
- 3.1.2 Porosity testing for the second phase of the development is yet to be undertaken by Cadarn Consulting Engineers, due to the current situation with COVID-19 this is not possible, to ensure the project can progress the site is deemed to have similar ground characteristics as phase 1 of the development, therefore the infiltration rate used for the design of the soakaway structures for phase 1 of the

development will be used for phase 2 at this preliminary stage. However further porosity testing should be conducted on site following the pandemic to confirm the assumption; that the infiltration rates of the proposed development are similar to those of the first phase of the development.

- 3.1.3 The infiltration rate to be used for design purposes at this preliminary stage of the design is: $1.63 \times 10^{-04} \text{ m/s}$
- 4.2.3 Based on this, and in order to comply with the above hierarchy, the drainage philosophy for the site will focus on attenuating surface water in periods of heavy rainfall whilst releasing into the ground at the natural infiltration rate.

4.2 Climate Change

- 4.2.1 TAN 15 states that an allowance for climate change should be provided within the on-site attenuation, without specifying what allowance should be made. The NPPF, which is the English equivalent of TAN 15, does however provide guidance derived from DEFRA FCDPAG3 'Economic Appraisal Supplementary Note to Operating Authorities – Climate Change Impacts' October 2006 (see Table 1). This document considers the effects of climate change for different design criteria.
- 4.2.2 The proposed development will have a design life of 100 years; based on the NPPF's guidance, the development therefore requires an allowance of 30% for climate change to be applied to the peak rainfall intensity.

Parameter	1990 to 2025	2025 to 2055	2055 to 2085	2085 to 2115
Peak Rainfall Intensity	+5%	+10%	+20%	+30%
Peak River Flow	+10%	+20%		
Offshore Wind Speed	+5%		+10%	
Extreme Wave Height	+5%		+10%	

Table 1 – Climate change requirements.

5.0 Surface Water Drainage Design

5.1 Design Philosophy

- 5.1.1 Based upon existing site information and the details of the proposed development, an assessment of the site run-off has been undertaken utilising the 'Flow' hydraulic modelling package (refer to **Appendix G**). This has enabled the existing and proposed run-off flows to be assessed and quantified, in accordance with IHR 124.
- 5.1.2 The tables below summarise the existing and proposed effective areas with their corresponding run-off coefficients, as per the Wallingford procedure, IHR 124 and the Modified Rational Method.

Surface	Total Area	Coefficient	Effective Area
Existing – Grass	9,915.195 m ²	0.35	3,470.318m ²
Proposed – Roofs	2,288.367 m ²	1.00	2,288.367 m ²
Proposed – External Paths	673.315 m ²	1.00	673.315 m ²
Proposed - Highway	1,328.337 m ²	0.75	996.253 m ²
Proposed – Private Road	506.737 m ²	0.75	380.053 m ²
Proposed – Parking Areas	904.313 m ²	0.75	678.235 m ²
Proposed – Grass	4,214.126 m ²	0.35	1,474.944 m ²

Table 2 – Existing and proposed areas.

5.1.3 The Areas provided within table 2 are provided on the existing and proposed area drawings contained within **Appendix H**. Reference should be made to the attached calculations for run-off volumes (**Appendix G**), which are summarised as follows:

Table 3 – Run-off rates for different return periods.

Reference	1 in 1 Year	1 in 30 Year	1 in 100 Year
Existing	1.70 l/s	3.40 1/s	4.10 l/s

5.1.4 As noted in section 4.2 it is proposed to discharge surface water run-off from the proposed development into the ground and therefore the surface water run-off from the site will be significantly reduced.

5.2 Method of Storage

- 5.2.1 Surface water run-off generated from all proposed hardstanding areas for the 1 in 100-year return period plus an allowance of 30% for climate change is to be provided onsite within below ground soakaway structures. Individual soakaways are to be provided for each property (where possible) and separately beneath the adopted highway accommodating the surface water run-off from the highway itself. The proposed surface water drainage layout illustrating this is contained within **Appendix I.**
- 5.2.2 There are four different soakaway types which are proposed in order to accommodate the proposed plots and highway drainage. The varying in soakaway type is as a result of the catchment area, these are summarised within the **Table 4**.

Catchment Area Region	Soakaway Type
$0m^2 - 90m^2$	А
$90m^2 - 150m^2$	В
$0m^2 - 150m^2$	С
400m ²	D

5.2.3 The proposed hardstanding areas for each plot and the soakaway type specified are summarised within **Table 5**.

			External			
Plot	Roof	Parking	Paths	Private	Total	Soakaway
Number	(m ²)	Туре				
1	48.967	36.625	4.324		89.916	А
2	39.48	23.237	6.488		69.205	А
3	41.133	23.247	18.681		83.061	А
4 & 5	68.607	35.271	47.793		151.671	C
6&7	68.607	35.328	46.882		150.817	C
8	83.034	31.35	18.819		133.203	В
9	84.683	27.585	20.729		132.997	В
10	83.034	26.624	18.819		128.477	В
11	92.298	26.29	26.124		144.712	C
12 & 13	190.384	56.095	47.07	105.541	399.09	D
14 & 15	150.291	54.526	32.17	158.469	395.456	D
16	83.034	30.093	18.819		131.946	В
17	84.683	30.011	20.729		135.423	С
18	98.086	29.996	20.946		149.028	С
19	92.298	30.975	26.124		149.397	С
20	84.683	34.096	20.729		139.508	С
21	98.086	32.997	20.946		152.029	С
22	92.298	30.692	26.124		149.114	С
23	98.086	29.997	20.946		149.029	С
24	92.298	29.697	26.124		148.119	С
25	98.086	29.909	20.946		148.941	С
26	77.118	30.555	16.085		123.758	В
27	73.173	30.835	16.085		120.093	В
28	47.014	44.972	27.776		119.762	В
29	41.133	22.152	23.739		87.024	А
30	41.133	23.04	3.681		67.854	А
31	41.133	23.04	25.007		89.18	А
32	41.133	23.04	3.681		67.854	А
· · · ·						

Tab

The characteristics of the four soakaway types is provided below. 5.2.4

18.797

5.2.5 Soakaway Type A

33

47.014

Geocellular Storage Crates:	2.000m x 1.000m
Depth:	1.200m
Storage Requirements:	2.165m ³
Storage Provided:	2.280 m ³

23.038

A

88.849

5.2.6 Soakaway Type B

Geocellular Storage Crates:	2.000m x 2.000m
Depth:	1.200m
Storage Requirements:	3.695m ³
Storage Provided:	4.560 m ³

5.2.7 <u>Soakaway Type C</u>

Granular Trench:	2.010m x 2.010m
Integrated Chamber:	1.500m Ø
Depth:	1.450m
Storage Requirements:	3.382 m ³
Storage Provided:	2.447 m ³

5.2.8 Due to the location of an existing combined sewer at the rear of plots 12 - 15, there is two communal soakaways each accommodating two of the four properties and an area of the private access track as indicated within **Table 5**.

5.2.9 Soakaway Type D

Granular Trench:	3.350m x 3.350m
Integrated Chamber:	2.400m Ø
Depth:	1.600m
Storage Requirements:	10.127 m ³
Storage Provided:	10.364 m ³

5.2.10 Calculations for each soakaway type are contained within Appendix J.

- 5.3.1 The SuDS Manual 2015 requires appropriate measures to be in place for the maintenance of surface water drainage systems and sustainable drainage features.
- 5.3.2 The maintenance schedule shown in **Tables 6 & 7** have been derived in strict accordance with the SuDS Manual 2015 and from a risk-assessed approach during the design stage. These schedules are not exhaustive and should be reassessed at regular intervals to determine if any additional maintenance requirements are required to preserve the performance and condition of the site drainage system.
- 5.3.3 The surface water drainage system for the highway network is to be adopted under section 38 of the Highways Act 1980 and therefore will be maintained by the Highway Authority, a maintenance schedule for this network is contained within **Table 6**.
- 5.3.4 The Chamber soakaways for each individual plot are the responsibility of the future homeowner and should be maintained in line with **Table 7**.
- 5.3.5 As noted in Section 5.2, there are two communal soakaways located beneath the private access road each accommodating two properties and an area of the private roads in addition to this there are two additional soakaways accommodating other private roads across the site, these are to be offered to a management and maintenance company and are to be maintained in line with the Table 6.
- 5.3.6 Provided preventive maintenance measures are undertaken in accordance with the frequencies recommended in Table 6 & 7, the need for corrective maintenance should rarely arise.
- 5.3.7 Maintenance activities should be detailed in the Principal Contractor's Health and Safety Plan and Risk Assessments and should be updated on a regular basis to ensure the continued performance and long-term condition of the drainage system.

Table 6 – Operation and maintenance requirements for highway chambersoakaways, pipework and Highway gullies.

Maintenance Schedule	Required Action	Typical Frequency
Regular	Inspection for sediments and debris build	Annually.
Maintenance	up within base of Soakaway and Highway	
	Gullies.	
Occasional	Removal of sediments and debris from	As required based
Maintenance	sump within base of Soakaway and	upon inspection.
	Highway Gullies.	
Remedial	Reconstruct soakaway and/or replace or	As Required.
Actions/	clean void fill if performance deteriorates	
Corrective	or failure occurs.	
Maintenance.	Jetting of pipework to remove silts and	As Required.
	debris build up from pipework and	
	removal of sediments and debris from	
	base of soakaway.	
	Replacement of clogged geotextile wrap	As Required.
	around system (Will require	
	reconstruction of soakaway). if	
	performance deteriorates or failure occurs.	
Monitoring	Inspect silt traps in gullies and note rate of	3 Monthly in the
	sediment accumulation.	first year and then
		annually.
	Check Soakaway to ensure emptying is	3 Monthly in the
	occurring.	first year and then
		annually.

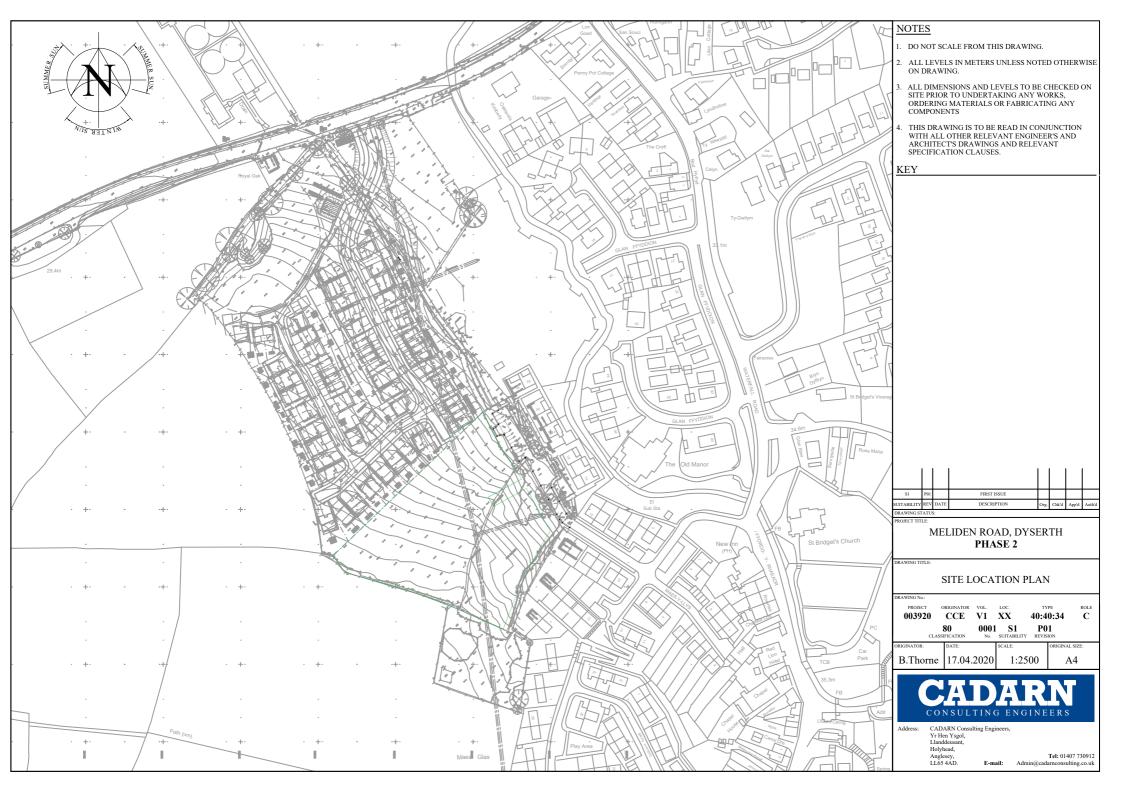
Table 6 – Operation and maintenance requirements for private propertychamber soakaways, pipework and chambers upstream.

Maintenance Schedule	Required Action	Typical Frequency
Regular	Inspection for sediments and debris build	Annually.
Maintenance	up within base of Soakaway.	
Occasional	Removal of sediments and debris from	As required based
Maintenance	sump within base of Soakaway.	upon inspection.
Remedial	Reconstruct soakaway and/or replace or	As Required.
Actions/	clean void fill if performance deteriorates	
Corrective	or failure occurs.	
Maintenance.	Jetting of pipework to remove silts and	As Required.
	debris build up from pipework and	
	removal of sediments and debris from	
	base of soakaway.	
	Replacement of clogged geotextile wrap	As Required.
	around system (Will require	
	reconstruction of soakaway). if	
	performance deteriorates or failure occurs.	
Monitoring	Inspect silt traps in gullies and note rate of	3 Monthly in the
	sediment accumulation.	first year and then
		annually.
	Check Soakaway to ensure emptying is	3 Monthly in the
	occurring.	first year and then
		annually.

6.1 Method of Discharge

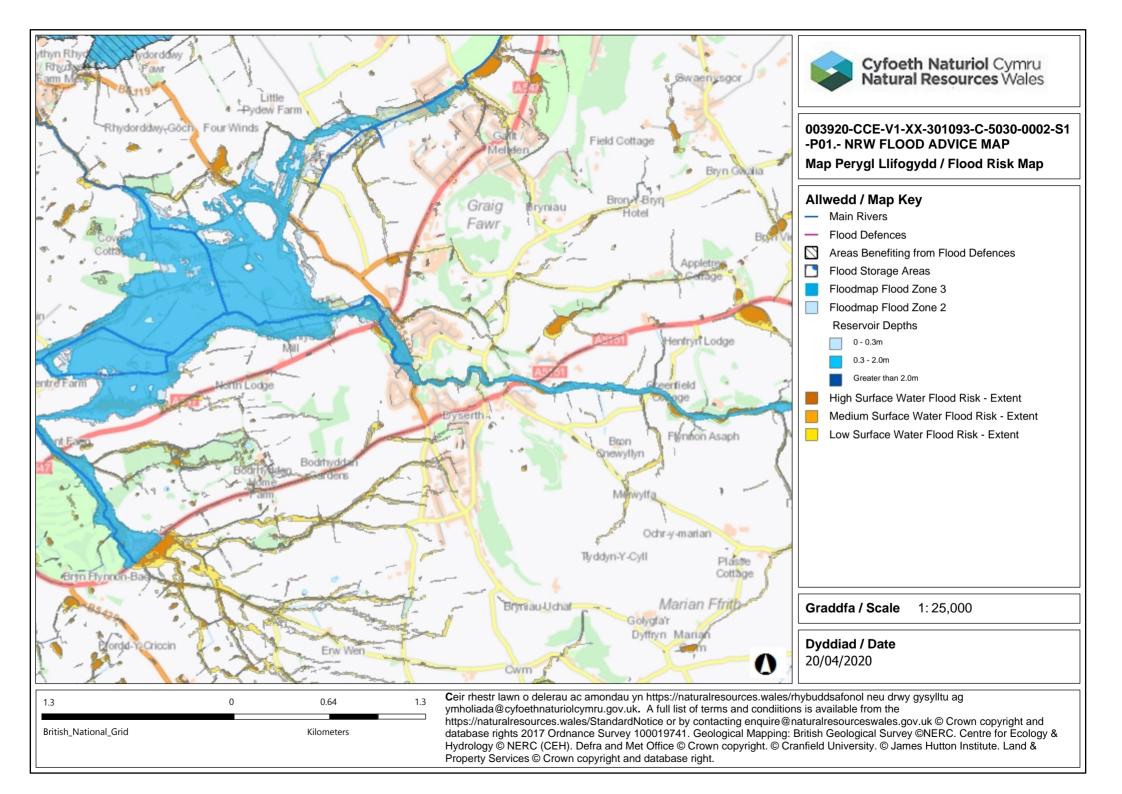
- 6.1.1 Design of the foul sewers included within the proposal has been carried out in accordance with BS EN 12056 Part 2, Approved Document H of the Building Regulations 2010 and other best practice documents, such as the 'Sewers for Adoption' 7th edition. In accordance with Approved Document H, the preference in terms of discharging foul effluent is to discharge into a public foul sewerage system. If a connection to the foul drainage network cannot be sought consideration should be given to the list below in order of priority;
 - Discharge into a public combined sewerage system,
 - Discharge into a private sewerage system,
 - Discharge using treatment plant into an infiltration system,
 - Discharge using treatment plant into a watercourse, and
- 6.1.2 As stated within Section 2.3 there is an foul sewerage network which is current being constructed and adopted under a section 104 the Waters Industries Act 1991 as part of the first phase of the development. Therefore, it is proposed to communicate foul effluent under section 106 of the Waters Industries Act 1991 for the proposed into this sewerage network. In order to do this a Section 106 application should be submitted to DCWW as the owner to provide 21 days of notice before the connection is made.
- 6.1.3 The hierarchy outlined in Approved Document H of the Building Regulations 2010 can therefore be satisfied by connecting into this sewerage system. This shall be achieved by conveying the foul arising from the proposed development within a Ø 150mm gravity pipe.
- 6.1.4 In line with Sewers for adoption 7th all Ø 150mm foul pipework should be laid at gradients to suit the site's topography, whilst ensuring that a minimum gradient of 1:150 is achieved, and minimum of 1:80 for all 100mm pipework.
- 6.1.5 The design of the foul drainage system, along with the surface water system, for the proposed development is illustrated in the drawing enclosed in **Appendix I**.

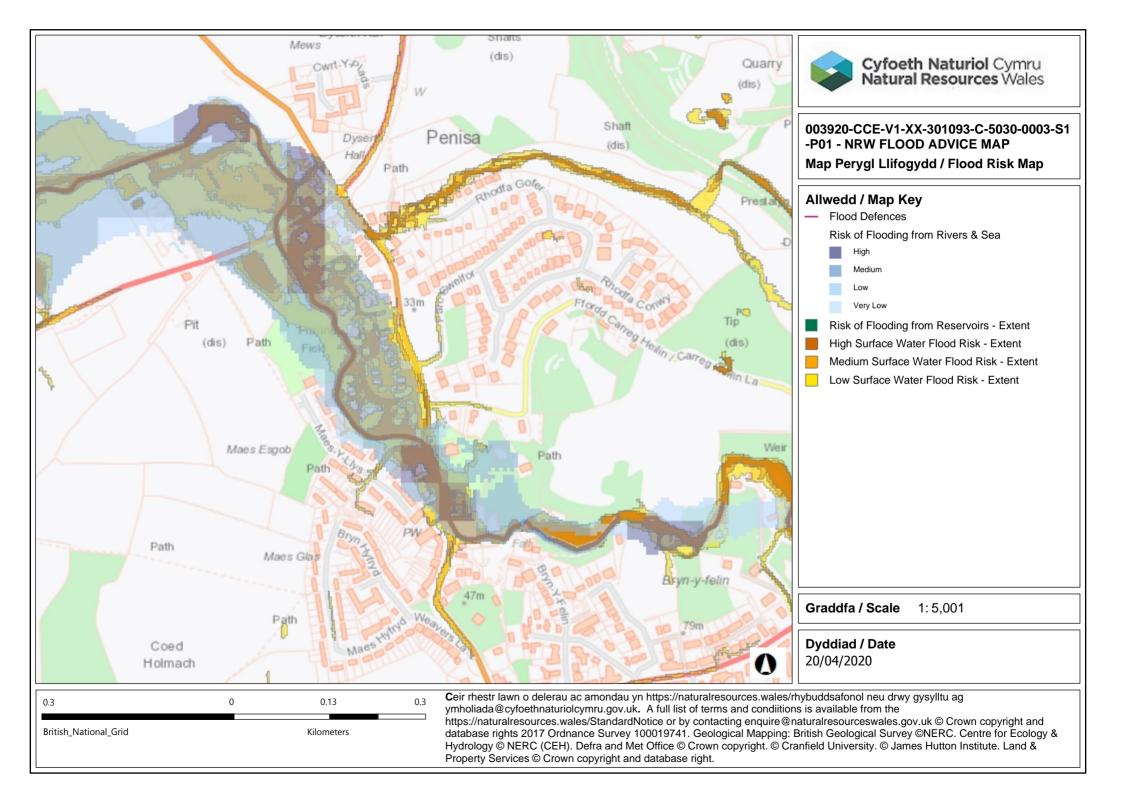
7.0 Conclusion & Recommendations

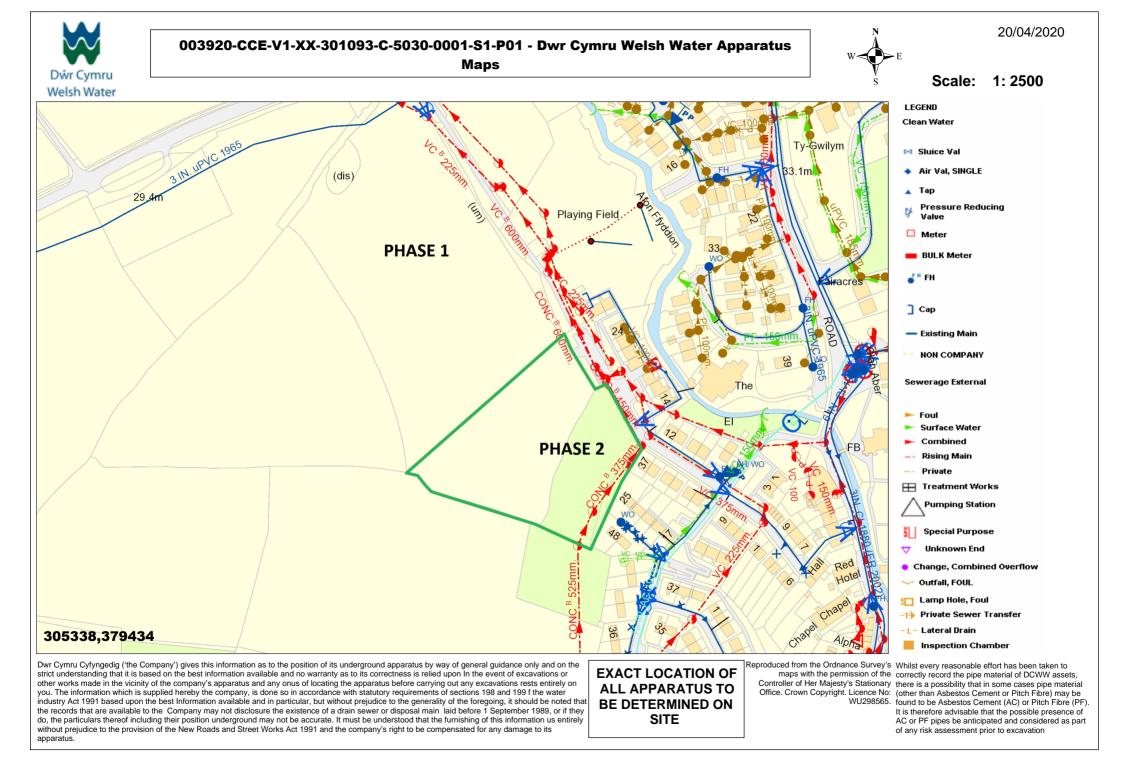

- 7.1.1 This Drainage Strategy Report provides a suitable drainage strategy for the discharge of surface water run-off and foul effluent generated as a result of the proposed development.
- 7.1.2 Surface water run-off from the proposed hardstanding areas will be stored within a below ground soakaway structures and will be released into the ground at the natural infiltration rate.
- 7.1.3 All foul generated from the proposed development will discharged directly into the proposed public foul drainage network, currently being constructed as part of the first phase of the development, via a gravity drainage system.
- 7.1.4 Further porosity testing should be carried out at the position and depth of the proposed soakaways to ensure that the ground conditions are consistent with the ground conditions encountered within the first phase of the development.

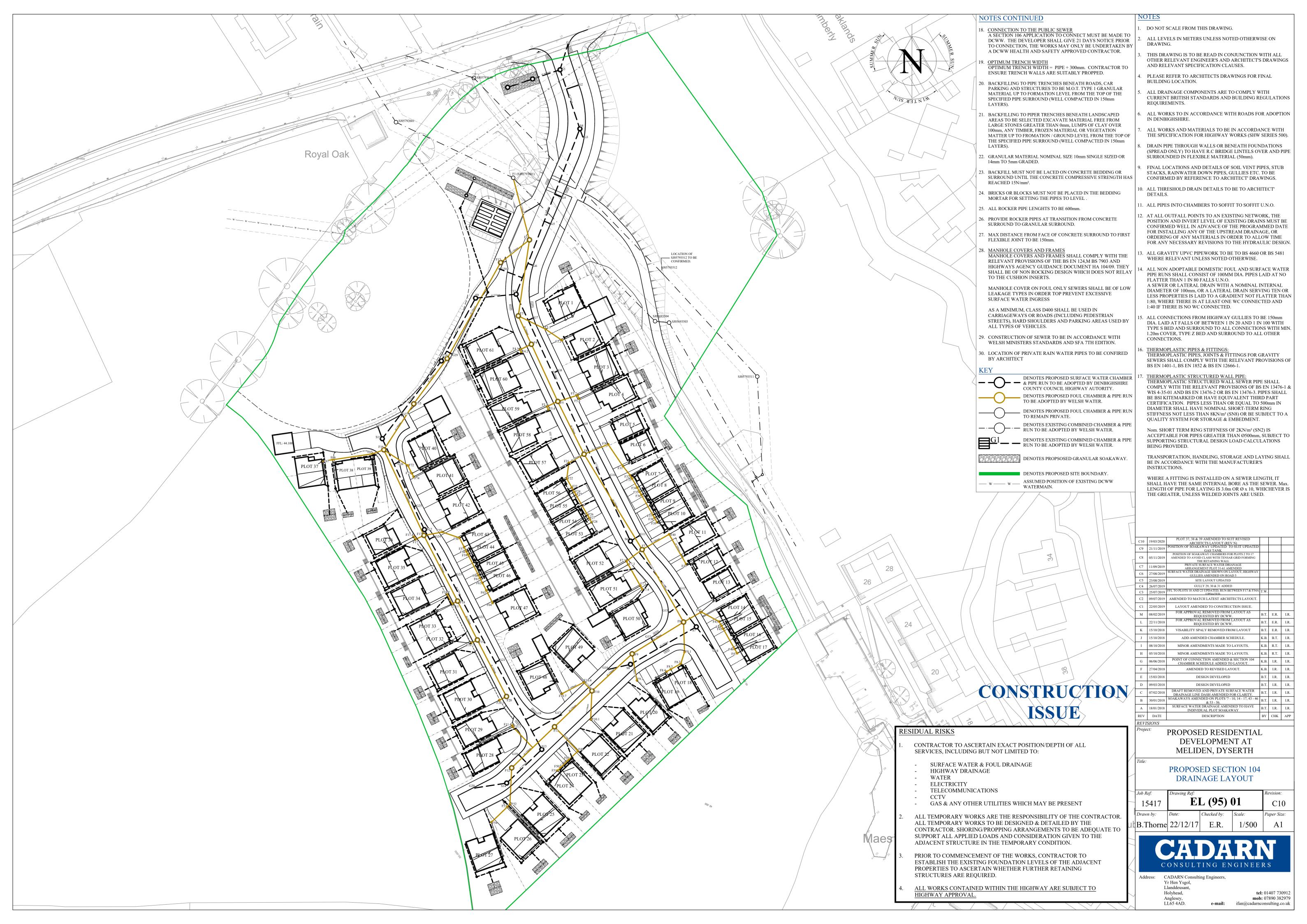
APPENDICES

APPENDIX A Site Location Plan




APPENDIX B Existing Above Ground Surface Water Flood Routing


APPENDIX C NRW Flood Advice Map



APPENDIX D Dŵr Cymru / Welsh Water Apparatus Map

APPENDIX E PHASE 1 – Section 104 Drainage Layout

APPENDIX F Groundsolve Ltd Porosity Report

The Groundsolve site investigation and porosity report has not been included due to the file size however this is available upon request.

APPENDIX G *'Causeway Flow'* Hydraulic Modelling Output

Drainage Design Report

Flow+

v7.0

Copyright © 1988-2020 Causeway Software Solutions Limited

 Filename
 \\192.168.0.200\data\Readyshare\CADARN CONSULTING ENGINEERS\2020\Job File\03920 - Meliden Road, Dyserth - Phase 2\3. Design\a. Calcs\Flow\flow .pfd

 Username
 Byron Thorne (byron@cadarnconsulting.co.uk)

Report produced on 17/04/2020 10:31:40

Causeway Sales

Tel:	+44(0) 1628 552000	
Fax:	+44(0) 1628 552001	
Email:	marketing@causeway.com	
Web:	www.causeway.com	

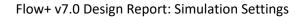
Technical support web portal:

http://support.causeway.com

Rainfall Methodology	FSR	
Return Period (years)		
Additional Flow (%)	0	
FSR Region	England and Wales	
M5-60 (mm)		
Ratio-R		
cv	0.750	
Time of Entry (mins)		
Maximum Time of Concentration (mins)	30.00	
Maximum Rainfall (mm/hr)	50.0	
Minimum Velocity (m/s)	1.00	
Connection Type	Level Soffits	
Minimum Backdrop Height (m)	0.200	
Preferred Cover Depth (m)	1.200	
Enforce best practice design rules		

	Name	Area (ha)	T of E (mins)	Add Inflow (l/s)	Cover Level (m)	Node Type	Manhole Type	Diameter (mm)	Width (mm)	Easting (m)	Northing (m)	Depth (m)	Notes	
--	------	--------------	------------------	------------------------	-----------------------	--------------	-----------------	------------------	---------------	----------------	-----------------	--------------	-------	--

Name	US Node	DS Node	Length (m)	ks (mm) / n	Velocity Equation	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	Link Type	T of C (mins)	Rain (mm/hr)	Con Offset (m)	Min DS IL (m)	Lateral Area (ha)	Lateral Ins Point (%)	Lateral T of E (mins)
														()	()	(,	()	()


1	Name	US Node	DS Node	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Minimum Depth (m)	Maximum Depth (m)	Σ Area (ha)	Σ Add Inflow (ha)	Pro Depth (mm)	Pro Velocity (m/s)	Notes
---	------	------------	------------	--------------	--------------	---------------	--------------------	--------------------	-------------------------	-------------------------	----------------	-------------------------	----------------------	--------------------------	-------

Link Length Slope Dia Link US CL US IL Depth DS CL DS IL Depth US Node Dia Width Node MH DS Node Dia Width Name (m) (1:X) (mm) Type (m) (m) (m) (m) (m) (mm) (mm) (mm) Type Name (mm) (mm) Type Name (mm) (mm)	Node M Type Ty	Width (mm)	Dia (mm)	Name			Width (mm)		US Node Name	Depth				US IL (m)		Link Type	Dia (mm)		Length (m)	Name
--	-------------------	---------------	-------------	------	--	--	---------------	--	-----------------	-------	--	--	--	--------------	--	--------------	-------------	--	---------------	------

Node NameEasting (m)Northing (m)CL (m)Depth (m)Dia (mm)Width (mm)Node (mm)MH TypeLink (DiaIL (m)Dia (m)					MH				· ·			-		
---	--	--	--	--	----	--	--	--	-----	--	--	---	--	--

Rainfall Methodology	FSR	Return Period (years)	Climate Change (%)
FSR Region	England and Wales	1	(
M5-60 (mm)	17.000	30	
Ratio-R	0.400	100	(
Summer CV	0.750		
Winter CV	0.840		
Analysis Speed	Normal		
Drain Down Time (mins)	240		
Additional Storage (m ³ /ha)	20.0		
Storm Durations (mins)	15		
	30		
	60		
	120		
	180		
	240		
	360		
	480		
	600		
	720		
	960		
	1440		
Check Discharge Rate(s)			
1 year (l/s)	1.7		
30 year (l/s)	3.4		
100 year (I/s)	4.1		
Check Discharge Volume			
100 year 360 minute (m³)			

Site Makeup	Greenfield
Greenfield Method	IH124
Positively Drained Area (ha)	0.992
SAAR (mm)	731
Soil Index	2
SPR	0.30
Region	9
Growth Factor 1 year	0.88
Growth Factor 30 years	1.80
Growth Factor 100 years	2.18
Betterment (%)	0
QBar	1.9
Q 1 year (l/s)	1.7
Q 30 year (l/s)	3.4
Q 100 year (l/s)	4.1

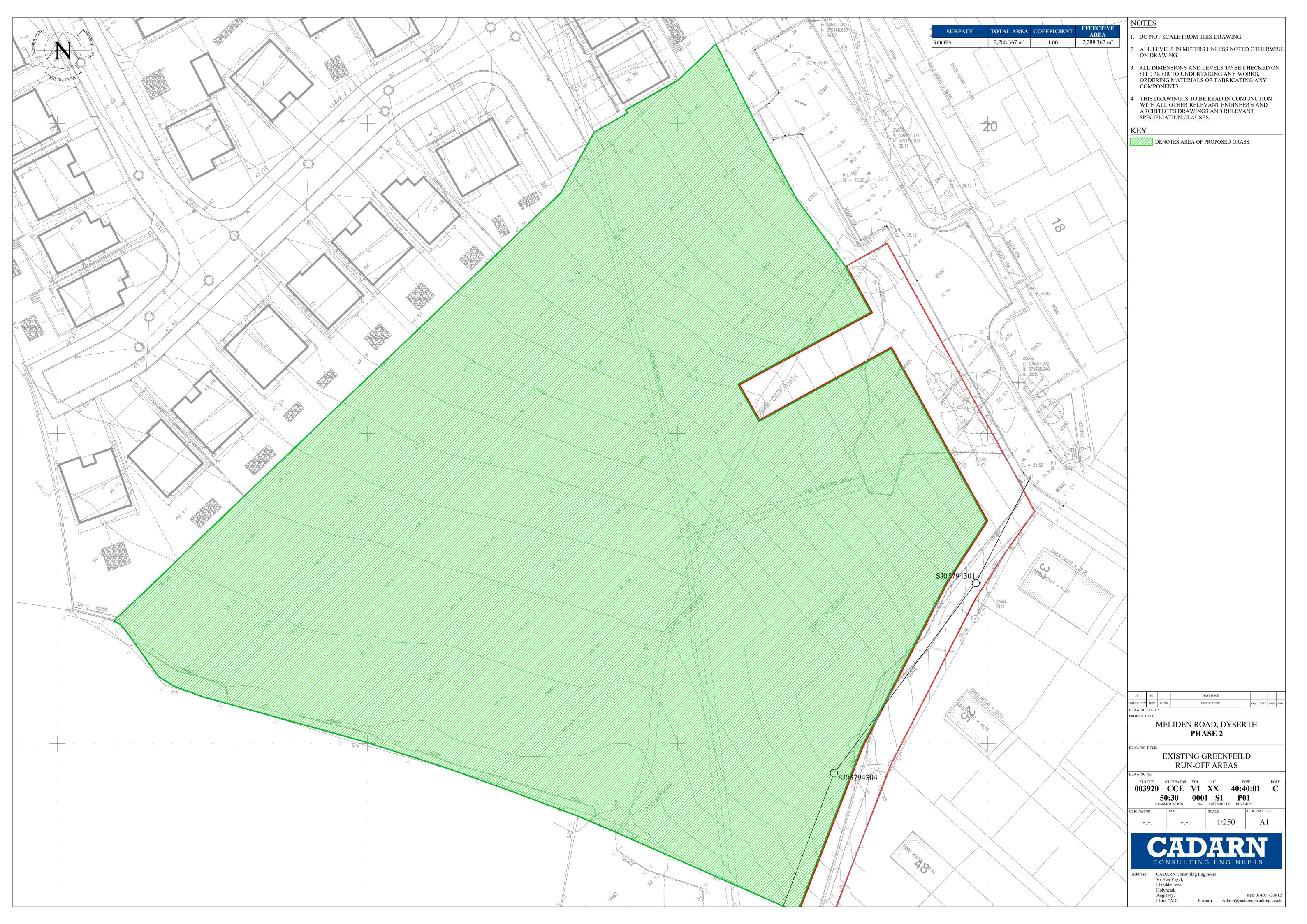
Flow+ v7.0 Design Report: Pre-development Discharge Rate

Default Values		Overrides				
Entry Loss (manhole)	0.250	Link	Entry Loss	Exit Loss	Node	Flood Risk (m)
Exit Loss (manhole)	0.250					
Entry Loss (junction)	0.000					
Exit Loss (junction)	0.000					
Flood Risk (m)	0.300					

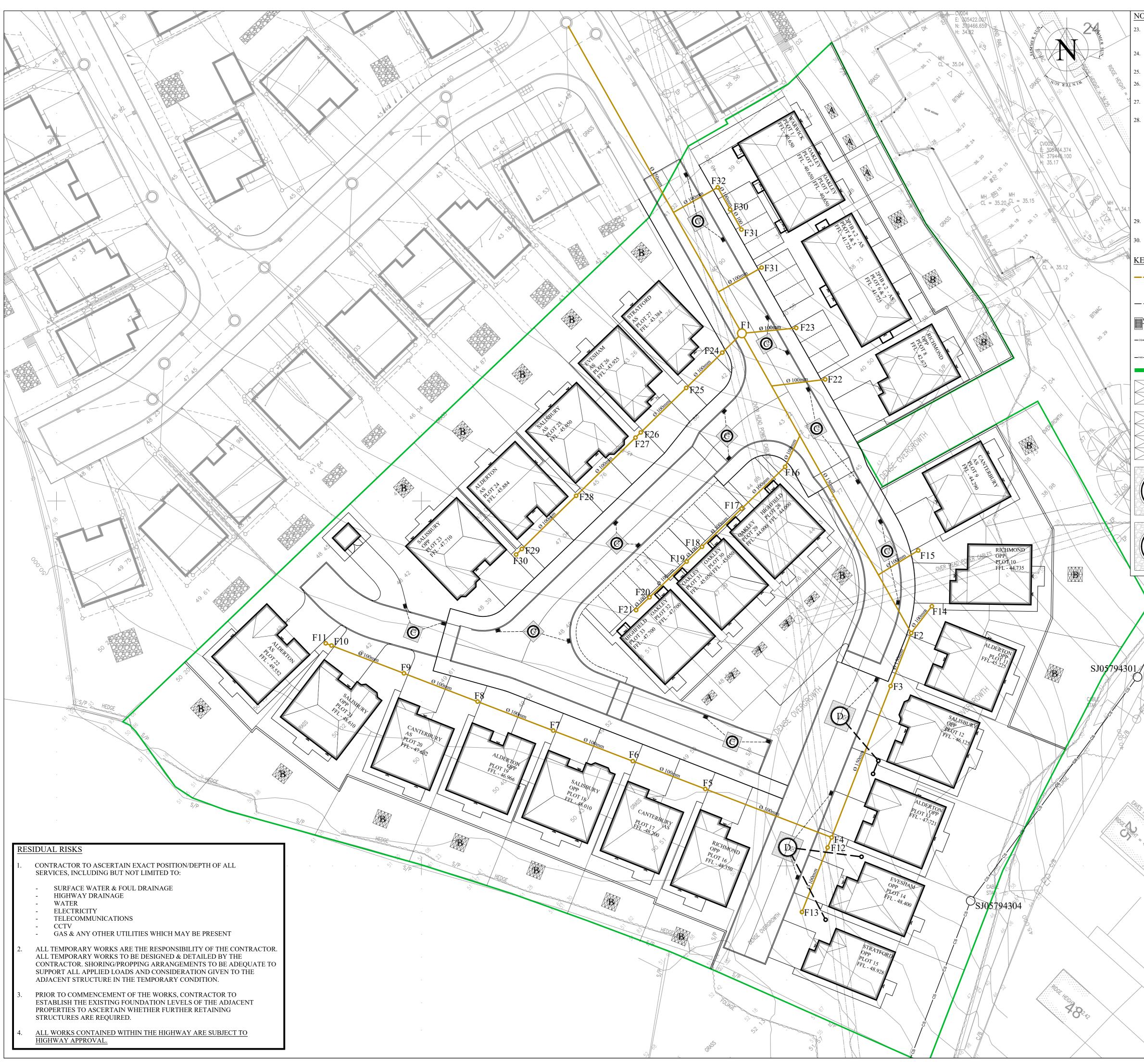
Node Size	
Node Losses	
Link Size	
Minimum Diameter (mm)	150
Link Length	
Maximum Length (m)	100.000
Coordinates	
Accuracy (m)	1.000
Crossings	
Cover Depth	
Minimum Cover Depth (m)	
Maximum Cover Depth (m)	3.000
Backdrops	
Minimum Backdrop Height (m)	
Maximum Backdrop Height (m)	1.500
Full Bore Velocity	
Minimum Full Bore Velocity (m/s)	
Maximum Full Bore Velocity (m/s)	3.000
Proportional Velocity	
Return Period (years)	
Minimum Proportional Velocity (m/s)	0.750
Maximum Proportional Velocity (m/s)	3.000
Surcharged Depth	
Return Period (years)	
Maximum Surcharged Depth (m)	0.100
Flooding	
Return Period (years)	30
Discharge Rates	
1 year (l/s)	
30 year (l/s)	
100 year (l/s)	
Discharge Volume	

100 year 360 minute (m³)

Adoptable					
Max Width (mm)	Diameter (mm)	Width (mm)	Max Depth (m)	Diameter (mm)	Width (mm)
374	1200		1.500	1050	
499	1350		99.999	1200	
749	1500				
900	1800				
>900	Link+900 mm				


Circular				
Shape	Circular	Dia (mm)		
Barrels	1	100		
Height (mm)		150		
Width (mm)		225		
Side Slope (1:X)				
Auto Increment (mm)	75			
Preferred Cover (m)	0.500			
Steep Slope (1:X)				
Follow Ground	x			
Velocity	Default			
ks (mm) / n				
culvert				
Shape	Closed Rectangular	Dia (mm)		
Barrels	1	1000		
Height (mm)				
Width (mm)	2000			
Side Slope (1:X)				
Auto Increment (mm)	100			
Preferred Cover (m)				
Steep Slope (1:X)				
Follow Ground	x			
Velocity	Manning			
ks (mm) / n	0.600			
Open channel				
Shape	Open User Defined	Dia (mm)	Width / Total	Depth / Total
Barrels	1	900	0.000	0.00

Height (mm)			0.000	1.000
Width (mm)	1800		1.000	1.000
Side Slope (1:X)				
Auto Increment (mm)	100			
Preferred Cover (m)				
Steep Slope (1:X)				
Follow Ground	x			
Velocity	Manning			
ks (mm) / n	0.600			
2 600				
Shape	Circular	Dia (mm)		
Barrels	2	600		
Height (mm)				
Width (mm)				
Side Slope (1:X)				
Auto Increment (mm)	75			
Preferred Cover (m)	1.200			
Steep Slope (1:X)				
Follow Ground	х			
Velocity	Default			
ks (mm) / n				


APPENDIX H Existing & Proposed Site Area Layout

APPENDIX I Proposed Section 104 Drainage Layout

DTES	NOTES
BACKFILL MUST NOT BE LACED ON CONCRETE BEDDING OR SURROUND UNTIL THE CONCRETE COMPRESSIVE STRENGTH HAS	 DO NOT SCALE FROM THIS DRAWING. ALL LEVELS IN METERS UNLESS NOTED OTHERWISE ON
REACHED 15N/mm ² . BRICKS OR BLOCKS MUST NOT BE PLACED IN THE BEDDING	2. ALL LEVELS IN METERS UNLESS NOTED OTHERWISE ON DRAWING.
MORTAR FOR SETTING THE PIPES TO LEVEL . ALL ROCKER PIPE LENGHTS TO BE 600mm.	3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ENGINEER'S AND ARCHITECT'S DRAWINGS AND RELEVANT SPECIFICATION CLAUSES.
PROVIDE ROCKER PIPES AT TRANSITION FROM CONCRETE SURROUND TO GRANULAR SURROUND.	4. PLEASE REFER TO ARCHITECTS DRAWINGS FOR FINAL BUILDING LOCATION.
MAX DISTANCE FROM FACE OF CONCRETE SURROUND TO FIRST FLEXIBLE JOINT TO BE 150mm.	5. ALL DRAINAGE COMPONENTS ARE TO COMPLY WITH CURRENT BRITISH STANDARDS AND BUILDING REGULATIONS REQUIREMENTS.
MANHOLE COVERS AND FRAMES MANHOLE COVERS AND FRAMES SHALL COMPLY WITH THE RELEVANT PROVISIONS OF THE BS EN 124,M BS 7903 AND HIGHWAYS AGENCY CHIDANCE DOCUMENT HA 104/00 THEY	 ALL WORKS TO IN ACCORDANCE WITH ROADS FOR ADOPTION IN DENBIGHSHIRE.
HIGHWAYS AGENCY GUIDANCE DOCUMENT HA 104/09. THEY SHALL BE OF NON ROCKING DESIGN WHICH DOES NOT RELAY TO THE CUSHION INSERTS.	 ALL WORKS AND MATERIALS TO BE IN ACCORDANCE WITH THE SPECIFICATION FOR HIGHWAY WORKS (SHW SERIES 500).
MANHOLE COVER ON FOUL ONLY SEWERS SHALL BE OF LOW LEAKAGE TYPES IN ORDER TOP PREVENT EXCESSIVE SURFACE WATER INGRESS	 BRAIN PIPE THROUGH WALLS OR BENEATH FOUNDATIONS (SPREAD ONLY) TO HAVE R.C BRIDGE LINTELS OVER AND PIPE SURROUNDED IN FLEXIBLE MATERIAL (50mm).
AS A MINIMUM, CLASS D400 SHALL BE USED IN CARRIAGEWAYS OR ROADS (INCLUDING PEDESTRIAN STREETS), HARD SHOULDERS AND PARKING AREAS USED BY ALL TYPES OF VEHICLES.	9. FINAL LOCATIONS AND DETAILS OF SOIL VENT PIPES, STUB STACKS, RAINWATER DOWN PIPES, GULLIES ETC. TO BE CONFIRMED BY REFERENCE TO ARCHITECT' DRAWINGS.
CONSTRUCTION OF SEWER TO BE IN ACCORDANCE WITH WELSH MINISTERS STANDARDS AND SFA 7TH EDITION.	10. ALL THRESHOLD DRAIN DETAILS TO BE TO ARCHITECT' DETAILS.
LOCATION OF PRIVATE RAIN WATER PIPES TO BE CONFIRED BY ARCHITECT	 ALL PIPES INTO CHAMBERS TO SOFFIT TO SOFFIT U.N.O. AT ALL OUTFALL POINTS TO AN EXISTING NETWORK, THE
EY F1 DENOTES PROPOSED FOUL CHAMBER AND PIPE RUNS TO BE ADOPTED BY DCWW UNDER SECTION	POSITION AND INVERT LEVEL OF EXISTING DRAINS MUST BE CONFIRMED WELL IN ADVANCE OF THE PROGRAMMED DATE FOR INSTALLING ANY OF THE UPSTREAM DRAINAGE, OR ORDERING OF ANY MATERIALS IN ORDER TO ALLOW TIME
104 OF THE WATERS INDUSTRIES ACT 1991. DENOTES PROPOSED FOUL CHAMBER AND	 FOR ANY NECESSARY REVISIONS TO THE HYDRAULIC DESIGN. 13. ALL GRAVITY UPVC PIPEWORK TO BE TO BS 4660 OR BS 5481 WHERE RELEVANT UNLESS NOTED OTHERWISE.
·	14. ALL NON ADOPTABLE DOMESTIC FOUL AND SURFACE WATER
G DENOTES PROPOSED HIGHWAY GULLY AND PIPE RUN.	PIPE RUNS SHALL CONSIST OF 100MM DIA. PIPES LAID AT NO FLATTER THAN 1 IN 80 FALLS U.N.O. A SEWER OR LATERAL DRAIN WITH A NOMINAL INTERNAL DIAMETER OF 100mm OR A LATERAL DRAIN SERVING TEN OR
DENOTES EXISTING COMBINED SEWER UNDER THE RESPONSIBILITY OF DCWW. DENOTES EXISTING FOUL SEWER UNDER THE RESPONSIBILITY OF DCWW.	DIAMETER OF 100mm, OR A LATERAL DRAIN SERVING TEN OR LESS PROPERTIES IS LAID TO A GRADIENT NOT FLATTER THAN 1:80, WHERE THERE IS AT LEAST ONE WC CONNECTED AND 1:40 IF THERE IS NO WC CONNECTED.
DENOTES PROPOSED SITE BOUNDARY. <u>TYPE A - 0m² - 90m²</u> WAVIN AQUACELL GEOCELLULAR STORAGE	15. ALL CONNECTIONS FROM HIGHWAY GULLIES TO BE 150mm DIA. LAID AT FALLS OF BETWEEN 1 IN 20 AND 1 IN 100 WITH TYPE S BED AND SURROUND TO ALL CONNECTIONS WITH MIN. 1.20m COVER, TYPE Z BED AND SURROUND TO ALL OTHER
STORAGE PROVISION: 1.0m x 2.0m x 1.2m Deep x 95% STORAGE PROVIDED: 2.280m ³ TYPE B - 90m ² - 150m ²	CONNECTIONS. 16. <u>THERMOPLASTIC PIPES & FITTINGS:</u> THERMOPLASTIC PIPES, JOINTS & FITTINGS FOR GRAVITY SEWERS SHALL COMPLY WITH THE RELEVANT PROVISIONS OF
WAVIN AQUACELL GEOCELLULAR STORAGE STORAGE PROVISION: 2.0m x 2.0m x 1.2m Deep x 95% STORAGE PROVIDED: 4.560m ³	 SEWERS SHALL COMPLY WITH THE RELEVANT PROVISIONS OF BS EN 1401-1, BS EN 1852 & BS EN 12666-1. 17. <u>THERMOPLASTIC STRUCTURED WALL PIPE:</u> THERMOPLASTIC STRUCTURED WALL SEWER PIPE SHALL
	COMPLY WITH THE RELEVANT PROVISIONS OF BS EN 13476-1 & WIS 4-35-01 AND BS EN 13476-2 OR BS EN 13476-3. PIPES SHALL
TYPE C - 0m² - 150m² Ø 1500mm CONCRETE TYPE 2 PERFORATED CHAMBER WITH 2.010m x 2.010m GRANUAL CHAMBER WITH 2.010m x DODING	BE BSI KITEMARKED OR HAVE EQUIVALENT THIRD PART CERTIFICATION. PIPES LESS THAN OR EQUAL TO 500mm IN DIAMETER SHALL HAVE NOMINAL SHORT-TERM RING STIFFNESS NOT LESS THAN 8KN/m ² (SN8) OR BE SUBJECT TO A
SURROUND, ACCOMIDATING ADOPTED HIGHWAY AND PRIVATE ROADS. STORAGE PROVIDED: 3.447m ³	QUALITY SYSTEM FOR STORAGE & EMBEDMENT. Nom. SHORT TERM RING STIFFNESS OF 2KN/m ² (SN2) IS ACCEPTABLE FOR PIPES GREATER THAN Ø500mm, SUBJECT TO SUPPORTING STRUCTURAL DESIGN LOAD CALCULATIONS BEING PROVIDED.
TYPE D - 400m ² Ø 2400mm CONCRETE TYPE 2 PERFORATED CHAMBER WITH 3.350m x 3.350m GRANUAL SURROUND ACCOMIDATING BOTH AN AREA OF	TRANSPORTATION, HANDLING, STORAGE AND LAYING SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S
D PRIVATE ROADS AND TWO PROERTIES. STORAGE PROVIDED: 10.364m ³	INSTRUCTIONS. WHERE A FITTING IS INSTALLED ON A SEWER LENGTH, IT SHALL HAVE THE SAME INTERNAL BORE AS THE SEWER. Max.
	LENGTH OF PIPE FOR LAYING IS 3.0m OR Ø x 10, WHICHEVER IS THE GREATER, UNLESS WELDED JOINTS ARE USED.
	18. <u>CONNECTION TO THE PUBLIC SEWER</u> A SECTION 106 APPLICATION TO CONNECT MUST BE MADE TO DCWW. THE DEVELOPER SHALL GIVE 21 DAYS NOTICE PRIOR TO CONNECTION, THE WORKS MAY ONLY BE UNDERTAKEN BY A DCWW HEALTH AND SAFETY APPROVED CONTRACTOR.
	19. <u>OPTIMUM TRENCH WIDTH</u> OPTIMUM TRENCH WIDTH = PIPE + 300mm. CONTRACTOR TO
	ENSURE TRENCH WALLS ARE SUITABLY PROPPED. 20. BACKFILLING TO PIPE TRENCHES BENEATH ROADS, CAR
A A A A A A A A A A A A A A A A A A A	PARKING AND STRUCTURES TO BE M.O.T. TYPE 1 GRANULAR MATERIAL UP TO FORMATION LEVEL FROM THE TOP OF THE SPECIFIED PIPE SURROUND (WELL COMPACTED IN 150mm LAYERS).
CABLE STAY	21. BACKFILLING TO PIPER TRENCHES BENEATH LANDSCAPED AREAS TO BE SELECTED EXCAVATE MATERIAL FREE FROM LARGE STONES GREATER THAN 0mm, LUMPS OF CLAY OVER 100mm, ANY TIMBER, FROZEN MATERIAL OR VEGETATION MATTER UP TO EDMATED V (CROUND LEVEL FROM THE TOP OF
	MATTER UP TO FROMATION / GROUND LEVEL FROM THE TOP OF THE SPECIFIED PIPE SURROUND (WELL COMPACTED IN 150mm LAYERS).
	22. GRANULAR MATERIAL NOMINAL SIZE 10mm SINGLE SIZED OR 14mm TO 5mm GRADED.
	S1 P01 FIRST ISSUE I I SUITABILITY REV DATE DESCRIPTION Org. Chk'd App'd Auth.
	DRAWING STATUS: PROJECT TITLE: MELIDEN ROAD DVSERTH
	MELIDEN ROAD, DYSERTH PHASE 2
	DRAWING TITLE: PROPOSED HIGHWAY
	DRAWING NO:
	PROJECT ORIGINATOR VOL. LOC. TYPE ROLE 003920 CCE V1 XX 40:40:01 C 50:30 0006 S1 P01
	CLASSIFICATION No. SUITABILITY REVISION ORIGINATOR: DATE: SCALE: ORIGINAL SIZE:
	B.Thorne 17.04.2020 1:250 A1
	CADARN
	CONSULTING ENGINEERS
	Address: CADARN Consulting Engineers, Yr Hen Ysgol, Llanddeusant,
	Holyhead, Anglesey, LL65 4AD. E-mail: Admin@cadarnconsulting.co.uk
\rangle \land \land \land	

APPENDIX J Proposed Soakaway Calculations

	Soa	Soakaway calculations to BRE Digest 365				
CADARN	Project: Meliden Road, Dyserth, Phase 2					
	Job Reference:	03920	Done By:	Byron Thorne		
CONSULTING ENGINEERS	Location:	TYPE A	Date	17.04.2020		

M5-60min M5-60min + 30%

20.0 **26**

Runoff Coefficients

Duration	M5-60min	r	Z1	M5-D	Z2	M100-D	Ι	Area	Inflow	Outflow	Storage (cu
(min)	(mm)			(mm)		(mm)	(mm/hr)	(sq m)	(cu m)	(cu m)	m)
5.0	26.0	0.3	0.34	8.8	1.88	16.6	199.66	90.00	1.51	0.27	1.241
10.0	26.0	0.3	0.50	12.9	1.96	25.2	151.04	90.00	2.30	0.55	1.753
15.0	26.0	0.3	0.59	15.3	1.99	30.6	122.27	90.00	2.80	0.82	1.982
30.0	26.0	0.3	0.78	20.3	2.03	41.1	82.29	90.00	3.81	1.64	2.165
60.0	26.0	0.3	1.00	26.0	2.00	52.1	52.05	90.00	4.89	3.28	1.609
120.0	26.0	0.3	1.24	32.2	1.95	62.9	31.47	90.00	6.08	6.57	-0.488
240.0	26.0	0.3	1.55	40.3	1.89	76.1	19.02	90.00	7.68	13.14	-5.458
360.0	26.0	0.3	1.80	46.8	1.84	85.9	14.32	90.00	8.98	19.71	-10.725
600.0	26.0	0.3	2.13	55.4	1.77	98.2	9.82	90.00	10.93	32.85	-21.921
1440.0	26.0	0.3	2.79	72.5	1.66	120.2	5.01	90.00	15.83	78.84	-63.008

Percolation factor	(m/s)	1.63E-04	
Geocellular Soakaway	y		
No of Trenches		(nr)	1.000
Trench Width		(m)	2.000
Trench Length		(m)	1.000
Effective Depth		(m)	1.200
Eff Area of soakaway	7	(sq m)	5.600
Storage provided		(cu m)	2.280
Total Storage provide	ed	(cu m)	2.280

	Soa	Soakaway calculations to BRE Digest 365				
CADARN	Project:	Meliden Road, Dyserth, Phase 2				
	Job Reference:	03920	Done By:	Byron Thorne		
CONSULTING ENGINEERS	Location:	ТҮРЕ В	Date	17.04.2020		

M5-60min M5-60min + 30%

20.0 **26**

Runoff Coefficients

Duration	M5-60min	r	Z1	M5-D	Z2	M100-D	Ι	Area	Inflow	Outflow	Storage (cu
(min)	(mm)			(mm)		(mm)	(mm/hr)	(sq m)	(cu m)	(cu m)	m)
5.0	26.0	0.3	0.34	8.8	1.88	16.6	199.66	150.00	2.51	0.43	2.083
10.0	26.0	0.3	0.50	12.9	1.96	25.2	151.04	150.00	3.81	0.86	2.950
15.0	26.0	0.3	0.59	15.3	1.99	30.6	122.27	150.00	4.64	1.29	3.347
30.0	26.0	0.3	0.78	20.3	2.03	41.1	82.29	150.00	6.28	2.58	3.695
60.0	26.0	0.3	1.00	26.0	2.00	52.1	52.05	150.00	8.02	5.16	2.855
120.0	26.0	0.3	1.24	32.2	1.95	62.9	31.47	150.00	9.86	10.32	-0.466
240.0	26.0	0.3	1.55	40.3	1.89	76.1	19.02	150.00	12.25	20.65	-8.402
360.0	26.0	0.3	1.80	46.8	1.84	85.9	14.32	150.00	14.14	30.97	-16.832
600.0	26.0	0.3	2.13	55.4	1.77	98.2	9.82	150.00	16.82	51.62	-34.799
1440.0	26.0	0.3	2.79	72.5	1.66	120.2	5.01	150.00	23.04	123.88	-100.846

Percolation factor	(m/s)	1.63E-04	
Geocellular Soakaway			
No of Trenches		(nr)	1.000
Trench Width		(m)	2.000
Trench Length		(m)	2.000
Effective Depth		(m)	1.200
Eff Area of soakaway		(sq m)	8.800
Storage provided		(cu m)	4.560
Total Storage provided		(cu m)	4.560

	Soa	Soakaway calculations to BRE Digest 365				
CADARN	Project: Meliden Road, Dyserth, Phase 2					
	Job Reference:	03920	Done By:	Byron Thorne		
CONSULTING ENGINEERS	Location:	TYPE C	Date	17.04.2020		

M5-60min M5-60min + 30%

20.0 26

Duration	M5-60min	r	Z1	M5-D	Z 2	M100-D	Ι	Area	Inflow	Outflow	Storage (cu
(min)	(mm)			(mm)		(mm)	(mm/hr)	(sq m)	(cu m)	(cu m)	m)
5.0	26.0	0.3	0.34	8.8	1.88	16.6	199.66	150.00	2.51	0.48	2.031
10.0	26.0	0.3	0.50	12.9	1.96	25.2	151.04	150.00	3.81	0.96	2.846
15.0	26.0	0.3	0.59	15.3	1.99	30.6	122.27	150.00	4.64	1.45	3.190
30.0	26.0	0.3	0.78	20.3	2.03	41.1	82.29	150.00	6.28	2.89	3.382
60.0	26.0	0.3	1.00	26.0	2.00	52.1	52.05	150.00	8.02	5.79	2.228
120.0	26.0	0.3	1.24	32.2	1.95	62.9	31.47	150.00	9.86	11.58	-1.720
240.0	26.0	0.3	1.55	40.3	1.89	76.1	19.02	150.00	12.25	23.16	-10.910
360.0	26.0	0.3	1.80	46.8	1.84	85.9	14.32	150.00	14.14	34.73	-20.595
600.0	26.0	0.3	2.13	55.4	1.77	98.2	9.82	150.00	16.82	57.89	-41.070
1440.0	26.0	0.3	2.79	72.5	1.66	120.2	5.01	150.00	23.04	138.93	-115.897
Percolation	n factor	(m/s)	1.63E-04								-
Concrete R	ing Soakawa	y				Additiona	Storage w	ithin Cham	ıber		
No of Tren	ches		(nr)	1.000		No of Cha	mbers		(nr)		1.000

Concrete King Boakaway		
No of Trenches	(nr)	1.000
Trench Width	(m)	2.010
Trench Length	(m)	2.010
Effective Depth	(m)	1.450
Eff Area of soakaway	(sq m)	9.869
Storage provided	(cu m)	0.885
Total Storage provided	(cu m)	3.447

Additional Storage within Chamber								
No of Chambers	(nr)	1.000						
Ring Diameter	(m)	1.500						
Chamber Wall Thickness	(m)	0.105						
Depth Of Chamber	(m)	1.450						
Storage provided	(cu m)	2.563						

	So	Soakaway calculations to BRE Digest 365				
CADARN	Project: Meliden Road, Dyserth, Phase 2			nase 2		
	Job Reference:	03920	Done By:	Byron Thorne		
CONSULTING ENGINEERS	Location:	TYPE D	Date	17.04.2020		

M5-60min M5-60min + 30%

20.0 **26**

Duration	M5-60min	r	Z 1	M5-D	Z2	M100-D	Ι	Area	Inflow	Outflow	Storage (cu
(min)	(mm)			(mm)		(mm)	(mm/hr)	(sq m)	(cu m)	(cu m)	m)
5.0	26.0	0.3	0.34	8.8	1.88	16.6	199.66	400.00	6.67	1.07	5.600
10.0	26.0	0.3	0.50	12.9	1.96	25.2	151.04	400.00	10.10	2.15	7.959
15.0	26.0	0.3	0.59	15.3	1.99	30.6	122.27	400.00	12.28	3.22	9.062
30.0	26.0	0.3	0.78	20.3	2.03	41.1	82.29	400.00	16.56	6.44	10.127
60.0	26.0	0.3	1.00	26.0	2.00	52.1	52.05	400.00	21.03	12.87	8.159
120.0	26.0	0.3	1.24	32.2	1.95	62.9	31.47	400.00	25.59	25.74	-0.150
240.0	26.0	0.3	1.55	40.3	1.89	76.1	19.02	400.00	31.26	51.48	-20.220
360.0	26.0	0.3	1.80	46.8	1.84	85.9	14.32	400.00	35.62	77.23	-41.610
600.0	26.0	0.3	2.13	55.4	1.77	98.2	9.82	400.00	41.37	128.71	-87.336
1440.0	26.0	0.3	2.79	72.5	1.66	120.2	5.01	400.00	53.08	308.90	-255.818
Percolation factor (m/s) 1.63E-04											
Concrete Ring Soakaway						Additiona	l Storage w	ithin Chan	ıber		
No of Tranchas (nr)		1 000		No of Chambers (nr) 1000							

Concrete Ring Soakaway		
No of Trenches	(nr)	1.000
Trench Width	(m)	3.350
Trench Length	(m)	3.350
Effective Depth	(m)	1.600
Eff Area of soakaway	(sq m)	21.943
Storage provided	(cu m)	3.125
Total Storage provided	(cu m)	10.364

Additional Storage within Ch	namber	
No of Chambers	(nr)	1.000
Ring Diameter	(m)	2.400
Chamber Wall Thickness	(m)	0.140
Depth Of Chamber	(m)	1.600
Storage provided	(cu m)	7.239